• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid
Title The Implementation of Probabilistic Security Analysis in Composite Power System Reliability
Authors 차준민(Cha, Jun-Min) ; 권세혁(Kwon, Sae-Hyuk) ; 김형철(Kim, Hyung-Chul)
Page pp.185-190
ISSN 1975-8359
Keywords Security ; Monte-Carlo Simulation ; Adequacy ; Reliability ; Stability ; Clearing Time
Abstract The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.