Processing math: 100%
  • ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electronics Engineering Kangwon National University, Korea.)
  2. (Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University, Korea.)
  3. (Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongnam, Korea.)



Deep learning, Inception V3, Plant disease, Tomato

1. ์„œ ๋ก 

์ž‘๋ฌผ์— ํ”ผํ•ด๋ฅผ ์ฃผ๋Š” ์š”์ธ์€ ํฌ๊ฒŒ ์ž์—ฐ์žฌํ•ด์™€ ๋ณ‘์ถฉํ•ด๊ฐ€ ์žˆ๋‹ค. ๋ณ‘์ถฉํ•ด๋Š” ์ž์—ฐ์žฌํ•ด๋ณด๋‹ค ์ž์ฃผ ๋ฐœ์ƒํ•˜๋ฉฐ ๊ณ„์ ˆ๋งˆ๋‹ค ๋ฐœ์ƒํ•˜๋Š” ์ข…๋ฅ˜๋„ ๋‹ค์–‘ํ•˜๋‹ค. ๋˜ํ•œ, ๋†์ž‘๋ฌผ์— ๋ฏธ์น˜๋Š” ํ”ผํ•ด์˜ ์ •๋„๊ฐ€ ํฌ๊ธฐ ๋•Œ๋ฌธ์— ๋ฏธ๋ฆฌ ๋ฐฉ์ œํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณ‘์ถฉํ•ด์˜ ๋ฐฉ์ œ๋ฐฉ๋ฒ•์€ ๋ฏธ๋ฆฌ ๋†์•ฝ์„ ์‚ดํฌํ•˜์—ฌ ์˜ˆ๋ฐฉํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ๋ณ‘์ถฉํ•ด ๋ฐœ๊ฒฌ ์‹œ ์‚ด๊ท ์ œ์™€ ์‚ด์ถฉ์ œ๋ฅผ ๋ฟŒ๋ ค ๋ณ‘๊ท ์ด๋‚˜ ํ•ด์ถฉ์— ์˜ํ•œ ํ”ผํ•ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณ‘์ถฉํ•ด๋ฅผ ๋ฏธ๋ฆฌ ์˜ˆ๋ฐฉํ•˜๊ฑฐ๋‚˜ ๋ฐฉ์ œํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š๋‹ค. ์‹œ๊ธฐ๋งˆ๋‹ค ์œ ํ–‰ํ•˜๋Š” ์งˆ๋ณ‘๊ณผ ํ•ด์ถฉ์ด ๋‹ค๋ฅด๊ณ  ๋ฐฉ์ œ์•ฝ์ œ๋ฅผ ์‚ดํฌํ•œ๋‹ค๊ณ  ํ•ด๋„ ๋ฐฉ์ œ ๋Œ€์ƒ์— ํ•ด๋‹นํ•˜๋Š” ๋ฐฉ์ œ์•ฝ์ œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์œผ๋ฉด ํšจ๊ณผ๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณ‘์ถฉํ•ด ํ”ผํ•ด๋ฅผ ์˜ˆ๋ฐฉํ•˜๋ ค๋ฉด ์‹œ๊ธฐ๋งˆ๋‹ค ์–ด๋–ค ์งˆ๋ณ‘๊ณผ ํ•ด์ถฉ์ด ์œ ํ–‰ํ•˜๊ณ  ์žˆ๋Š”์ง€ ํŒŒ์•…ํ•ด์•ผ ํ•˜๋ฉฐ, ์ž‘๋ฌผ์˜ ๋ณ‘์ถฉํ•ด ๋ฐœ์ƒ ์‹œ ์ „๋ฌธ๊ฐ€๊ฐ€ ๋ณ‘์ถฉํ•ด์˜ ์ข…๋ฅ˜๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ  ๋ณ‘์ถฉํ•ด ์ข…๋ฅ˜์— ์ ํ•ฉํ•œ ๋ฐฉ์ œ๋ฒ•์œผ๋กœ ๋ฐฉ์ œ๋ฅผ ์‹ค์‹œํ•ด์•ผ ํ•œ๋‹ค. ๋ณ‘์ถฉํ•ด์— ๋Œ€ํ•œ ์ „๋ฌธ์ง€์‹์ด ์—†๋Š” ๋†์—… ์ข…์‚ฌ์ž๋ผ๋ฉด ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ํ”ผํ•ด๋ฅผ ๋ฐ›์•˜์„ ๋•Œ ์ œ๋Œ€๋กœ ๋œ ๋ฐฉ์ œ๋ฐฉ๋ฒ•์„ ํŒŒ์•…ํ•˜์ง€ ๋ชปํ•˜์—ฌ ๋†์‚ฌ์— ๋” ํฐ ํ”ผํ•ด๋กœ ๋ฒˆ์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ณ‘์ถฉํ•ด ๋ฐœ์ƒ ์‹œ ๋†์—… ์ข…์‚ฌ์ž๋Š” ์ž‘๋ฌผ์˜ ์งˆ๋ณ‘ ์‚ฌ์ง„ ๋“ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์ „๋ฌธ๊ฐ€์—๊ฒŒ ์ž๋ฌธํ•˜๋Š” ๊ณผ์ •์„ ํ†ตํ•ด ๋ณ‘์ถฉํ•ด์˜ ์ข…๋ฅ˜๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ๋Œ€์ฒ˜ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ „๋ฌธ๊ฐ€๊ฐ€ ํ•œ ๋†์žฅ์—๋งŒ ์ƒ์ฃผํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ฏ€๋กœ ์ •ํ™•ํ•œ ์ง„๋‹จ์— ์‹œ๊ฐ„์ด ๊ฑธ๋ฆด ์ˆ˜๋ฐ–์— ์—†๋‹ค. ๋งŒ์•ฝ ๋ชจ์ž์ดํฌ ๋ฐ”์ด๋Ÿฌ์Šค ๊ฐ™์€ ์ „์—ผ์„ฑ์ด ๊ฐ•ํ•œ ์งˆ๋ณ‘์ด ๋†์žฅ ๋‚ด์— ์œ ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค๋ฉด ๋ฐœ๊ฒฌ ์ฆ‰์‹œ ๋น ๋ฅธ ๋Œ€์ฒ˜๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ์Šค๋งˆํŠธํŒœ์„ ๊ตฌ์ถ•ํ•˜์—ฌ ๋ณ‘์ถฉํ•ด๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋Š” ๋ณ‘์ถฉํ•ด์— ๋Œ€ํ•œ ์ „๋ฌธ์ง€์‹ ๋ฐ ์ธ๋ ฅ ๋ถ€์กฑ๊ณผ ๊ฐ™์€ ๋ฌธ์ œ์— ํ•ด๊ฒฐ์ฑ…์ด ๋˜์–ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์Šค๋งˆํŠธํŒœ์˜ ๋Œ€ํ‘œ์ ์ธ ์ž‘๋ฌผ์ธ ํ† ๋งˆํ† ์— ๋Œ€ํ•ด์„œ ๋ณ‘์ถฉํ•ด ํƒ์ง€ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 1์„ ๋ณด๋ฉด ํ† ๋งˆํ† ์˜ ์ƒ์‚ฐ๋Ÿ‰์€ 2011๋…„์— ๋น„ํ•ด ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ 2015๋…„์—๋Š” ์•ฝ 45๋งŒ ํ†ค์˜ ์ƒ์‚ฐ๋Ÿ‰์„ ๊ธฐ๋กํ•  ์ •๋„๋กœ ๋Œ€ํ‘œ์ ์ธ ์‹œ์„ค์›์˜ˆ ์ž‘๋ฌผ์ด๋‹ค[1]. ํ•˜์ง€๋งŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ์ƒ์‚ฐ๋Ÿ‰์— ๋น„ํ•ด ๋†๊ฐ€ ์ธ๊ตฌ๋Š” ์ง€์†์ ์œผ๋กœ ๊ฐ์†Œํ•˜๊ณ  ์žˆ๋‹ค[2]. ํ† ๋งˆํ† ์˜ ์ƒ์‚ฐ๋Ÿ‰์ด ๋Š˜์–ด๋‚œ ๋งŒํผ ์ž‘๋ฌผ์— ํ”ผํ•ด๋ฅผ ์ฃผ๋Š” ๋ณ‘์ถฉํ•ด ๋ฐฉ์ œ์— ๋Œ€ํ•œ ์ค‘์š”์„ฑ์€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์ง€๋งŒ, ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ๋‹ค์–‘ํ•œ ๋ณ‘์ถฉํ•ด์˜ ์ข…๋ฅ˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒŒ์•…ํ•˜๊ณ  ๋ฐฉ์ œํ•˜๋Š” ๊ฒƒ์€ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ํ† ๋งˆํ†  ๋ณ‘์ถฉํ•ด ํƒ์ง€ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ํ† ๋งˆํ†  ์žฌ๋ฐฐ ์‹œ ์ธ๋ ฅ์„ ๋ณด์กฐํ•˜๊ณ  ๋ฐฉ์ œ๋ฅผ ๋•๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ. 1. ๊ตญ๋‚ด ํ† ๋งˆํ†  ์ƒ์‚ฐ๋Ÿ‰ ๋ฐ ๋†๊ฐ€ ์ธ๊ตฌ ๋ณ€ํ™”

Fig. 1. Changes in tomato production and farm population

../../Resources/kiee/KIEE.2020.69.2.349/fig1.png

๋ณ‘์ถฉํ•ด๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ• ์ค‘์— ์„ผ์„œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ณ‘์ถฉํ•ด ํƒ์ง€๋ฅผ ์‹œ๋„ํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์žˆ๋‹ค. ๋จผ์ € ์„ผ์„œ๋ฅผ ํ†ตํ•œ ๋ณ‘์ถฉํ•ด ๋ถ„์„๋ฒ•์„ ์„ค๋ช…ํ•˜๊ณ  ๋ถ„์„๋ฒ•์— ๋งž๋Š” ๋ณ‘์ถฉํ•ด ํƒ์ง€ํ•  ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค[3]. ์„ผ์„œ ์ค‘์—์„œ ๊ด‘ํ•™ ์„ผ์„œ, ๋ถ„๊ด‘ ์„ผ์„œ, ์—ด ์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ RGB ๋ฐ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ถ„์„ํ•˜๊ณ  ๋ณ‘์ถฉํ•ด๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ณด์˜€๋‹ค. ์—ด์ด๋‚˜ ํ˜•๊ด‘ ์„ผ์„œ๋Š” ์‹๋ฌผ์˜ ์ŠคํŠธ๋ ˆ์Šค์— ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜์ง€๋งŒ, ํŠน์ • ์งˆ๋ณ‘์„ ์‹๋ณ„ํ•  ์ˆ˜ ์—†๋Š” ๋‹จ์ ์ด ์žˆ์œผ๋ฉฐ RGB ๋ฐ ๋ถ„๊ด‘๋ถ„์„์ด ์งˆ๋ณ‘ ๋ถ„์„์— ๋ฐ”๋žŒ์งํ•œ ๋ฐฉ๋ฒ•์ด๋ผ๊ณ  ์ •๋ฆฌํ•˜์˜€๋‹ค[4].

๋”ฅ๋Ÿฌ๋‹์„ ์ด์šฉํ•˜์—ฌ ๋ณ‘์ถฉํ•ด์˜ ํŠน์ง•์„ ์ฐพ์•„๋‚ด ๋†์ž‘๋ฌผ์˜ ๋ณ‘์ถฉํ•ด๋ฅผ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์€ ๊พธ์ค€ํžˆ ์—ฐ๊ตฌ๋˜์–ด์™”๋‹ค. ์ž‘๋ฌผ์ด ๋ณ‘์ถฉํ•ด์— ๋…ธ์ถœ๋˜๋ฉด ์—ด๋งค๋ฟ ์•„๋‹ˆ๋ผ ์žŽ์—๋„ ๋ฐ˜์ ์ด๋‚˜ ๋ณ€์ƒ‰ ๊ฐ™์€ ์ฆ์ƒ์ด ์ƒ๊ธด๋‹ค. ๊ทธ๋ž˜์„œ ์ž‘๋ฌผ์˜ ์žŽ์„ ์ด์šฉํ•ด ๋ณ‘์ถฉํ•ด์˜ ์ฆ์ƒ์„ ๋”ฅ๋Ÿฌ๋‹์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ์—ฐ๊ตฌ๋“ค์ด ์žˆ๋‹ค. ์šฐ์„  ์‹๋ฌผ์˜ ์žŽ์„ 58๊ฐœ์˜ ๋ฒ”์ฃผ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ฒ”์ฃผ๋Š” 25์ข…๋ฅ˜ ์‹๋ฌผ๋“ค์˜ ๋ณ‘์ถฉํ•ด ์ข…๋ฅ˜๋ณ„๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ์‚ฌ์šฉํ•œ ๋„คํŠธ์›Œํฌ๋“ค์€ AlexNet, GoogLeNet, VGG ๋“ฑ ๋ชจ๋‘ 5๊ฐœ์˜ ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๊ณ , ๊ฐ€์žฅ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์ด ์ข‹์€ 2๊ฐœ์˜ ๋ชจ๋ธ์„ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •ํ•œ 2๊ฐœ ๋ชจ๋ธ์˜ ๋„คํŠธ์›Œํฌ๋กœ ๋†๊ฐ€์—์„œ ์ดฌ์˜๋œ ๋†๊ฐ€ ์ด๋ฏธ์ง€์™€ ์žŽ๋งŒ ๋–ผ์„œ ์ดฌ์˜ํ•œ ์‹คํ—˜์‹ค ์ด๋ฏธ์ง€๋ฅผ ๋”ฐ๋กœ ํ•™์Šต์‹œ์ผฐ๋‹ค. ์ƒ๋Œ€๋ฐฉ์˜ ์œ ํ˜•์ด ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ๋ฅผ ์˜ˆ์ธกํ•˜๊ฒŒ ํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ๋กœ ๋†๊ฐ€์—์„œ ์ดฌ์˜๋œ ์ด๋ฏธ์ง€ ์œ ํ˜•์ด ์‹คํ—˜์‹ค ์ด๋ฏธ์ง€๋ณด๋‹ค ํšจ์œจ์ด ๋†’๋‹ค๋Š” ๊ฒฐ๋ก ์„ ๋‚ด์—ˆ๋‹ค[5]. ์‹คํ—˜์‹ค ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ Plant Village ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ํ† ๋งˆํ†  ์žŽ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•™์Šต์‹œํ‚จ ๋ชจ๋ธ๋„ ์ œ์‹œ๋˜์—ˆ๋‹ค. Alex Net๊ณผ Squeeze Net 2๊ฐ€์ง€์˜ ๋„คํŠธ์›Œํฌ๋กœ 9๊ฐœ์˜ ๋ณ‘์ถฉํ•ด ์ฆ์ƒ์„ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ Alex Net 95.6%, Squeeze Net 94.3%์˜ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค[6]. ๋‹ค๋ฅธ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ๋„ Plant Village์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. 14์ข…์˜ ์ž‘๋ฌผ๊ณผ 26๊ฐ€์ง€์˜ ๋ณ‘์ถฉํ•ด๊ฐ€ ์žˆ๋Š” 38๊ฐœ ๋ฒ”์ฃผ์˜ ์ด๋ฏธ์ง€๋“ค๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฏธ์ง€๋“ค์„ ์›๋ณธ, ๊ทธ๋ ˆ์ด ์Šค์ผ€์ผ, ๋ฐฐ๊ฒฝ ์ œ๊ฑฐ ๋“ฑ 3์ข…๋ฅ˜๋กœ ๋ณ€ํ˜•ํ•˜๊ณ  Alex Net๊ณผ GoogLeNet 2๊ฐ€์ง€์˜ ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•ด ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผฐ๋‹ค. ํ•˜๋‚˜์˜ ๋„คํŠธ์›Œํฌ๋งˆ๋‹ค ํ•™์Šต ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋น„์œจ์„ ๋‹ค๋ฅด๊ฒŒ ์„ค์ •ํ•ด ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํ•™์Šต๋ชจ๋ธ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ทธ ํ›„ ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ์™€ ํ•™์Šต ๋น„์œจ์˜ ์ฐจ์ด๋กœ ์ธํ•œ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค[7]. ๋”ฅ๋Ÿฌ๋‹์„ ์ด์šฉํ•œ ์œ„ ์—ฐ๊ตฌ ๋ชจ๋‘ ๋†์ž‘๋ฌผ์˜ ์žŽ ์‚ฌ์ง„์„ ํ•™์Šตํ•˜์—ฌ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ ๊ฐ์ž ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•ด ๋ชจ๋‘ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ์‹คํ—˜์‹ค ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์‹คํ—˜์‹ค ์ด๋ฏธ์ง€๋Š” ํ•™์Šต๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ์ž˜ ๋‚˜์˜ฌ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹ค์ œ ๋†๊ฐ€์—์„œ ์‚ฌ์šฉํ•  ๋•Œ ์‹คํ—˜์‹ค ์ด๋ฏธ์ง€์™€ ํ™˜๊ฒฝ์ด ๋‹ค๋ฅด๋ฏ€๋กœ ์˜ค์ฐจ๊ฐ€ ์ƒ๊ธธ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋†๊ฐ€ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ณ‘์ถฉํ•ด ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ํ† ๋งˆํ† ์—์„œ ์žŽ์„ ๋—„ ํ•„์š” ์—†์ด ์นด๋ฉ”๋ผ๋กœ ์žŽ ์•ž๋ฉด์„ ์ฐ์–ด ๋ณ‘์ถฉํ•ด๋ฅผ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณต์žกํ•œ ๋†๊ฐ€ ์ด๋ฏธ์ง€๋ฅผ ์ด์šฉํ•ด ํ•™์Šตํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์˜ํ–ฅ์„ ์ ๊ฒŒ ๋ฐ›์•„ ์˜ค์ฐจ๊ฐ€ ์ ์„ ๊ฒƒ์ด๋‹ค. ์ „๋ฌธ๊ฐ€์˜ ํŒ๋‹จ ์ „์— ์ผ์ฐจ์ ์œผ๋กœ ๋ณ‘์ถฉํ•ด์˜ ์ข…๋ฅ˜๋ฅผ ๋น ๋ฅด๊ฒŒ ํŒŒ์•…ํ•˜๊ณ  ์ ํ•ฉํ•œ ๋ฐฉ์ œ๋ฒ•์œผ๋กœ ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ์–ด ํ† ๋งˆํ†  ์žฌ๋ฐฐ ์‹œ ํ”ผํ•ด๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•

2.1 CNN(Convolution Neural Network)

CNN์€ ์ปจ๋ณผ๋ฃจ์…˜์„ ์ด์šฉํ•œ ์‹ ๊ฒฝ๋ง ๋„คํŠธ์›Œํฌ์ด๋‹ค. ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋ถ„์•ผ ์ค‘์—์„œ๋„ ์Œ์„ฑ์ด๋‚˜ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ CNN์„ ๋งŽ์ด ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๋„คํŠธ์›Œํฌ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์ธต, ์ƒ˜ํ”Œ๋ง ์ธต๊ณผ ๊ฐ™์€ ์ธต๋“ค์„ ์Œ“์•„ ์‹ ๊ฒฝ๋ง์„ ๊ตฌ์„ฑํ•œ๋‹ค. ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด์˜ค๋ฉด ์ปจ๋ณผ๋ฃจ์…˜ ์—ฐ์‚ฐ์„ ํ†ตํ•ด ํŠน์ง•๋งต์„ ์ถ”์ถœํ•˜๊ณ  ํ’€๋ง์„ ํ†ตํ•ด์„œ ํŠน์ง•๋งต์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š” ์—ฐ์‚ฐ์„ ์ง„ํ–‰ํ•œ๋‹ค. ๋ฐœ์ƒํ•  ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ถ€ ๋‰ด๋Ÿฐ์˜ ์—ฐ๊ฒฐ์„ ๋Š์–ด ํ•™์Šต์— ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๋“œ๋กญ์•„์›ƒ์„ ํ™œ์šฉํ•œ๋‹ค. ๋„คํŠธ์›Œํฌ์˜ ๋งˆ์ง€๋ง‰์—๋Š” ์™„์ „์—ฐ๊ฒฐ ์ธต์„ ๋‘์–ด ํ™œ์„ฑ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด ๊ฒฐ๊ณผ๋ฅผ ๋‚ธ๋‹ค. ๊ฒฐ๊ณผ๋ฅผ ๋‚ธ ํ›„์—๋Š” ์—ญ์ „ํŒŒ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ํ•„ํ„ฐ์˜ ์ตœ์ ๊ฐ’์„ ์ฐพ์•„๋‚ธ๋‹ค. ์ด๋Ÿฐ ๊ณผ์ •๋“ค์„ ๋ฐ˜๋ณตํ•˜์—ฌ ์ด๋ฏธ์ง€์˜ ๋” ๋‚˜์€ ํŠน์ง•๋“ค์„ ์ฐพ์•„ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋„คํŠธ์›Œํฌ์ด๋‹ค[8]. ILSVRC2012์—์„œ CNN์œผ๋กœ ์ด๋ฃจ์–ด์ง„ AlexNet์ด ์šฐ์Šนํ•œ ์ดํ›„, Residual learning์„ ํ™œ์šฉํ•œ ResNet[9]๊ณผ ์••์ถ•๊ณผ ์žฌ์กฐ์ •์˜ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•ด ์„ฑ๋Šฅ์„ ๋†’์ธ SENet[10]๊ณผ ๊ฐ™์€ ์—ฌ๋Ÿฌ ๋ณ€ํ˜• ๊ตฌ์กฐ๊ฐ€ ๋‚˜์˜ค๊ณ  ์žˆ๋‹ค.

2.2 Inception ๊ธฐ๋ฐ˜ ๋„คํŠธ์›Œํฌ

ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ๋Š” ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์— ๊ฐ•์ ์„ ๋ณด์ด๋Š” CNN ๊ธฐ๋ฐ˜ ๋„คํŠธ์›Œํฌ ์ค‘์—์„œ 2014๋…„ ILSVRC์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ ์šฐ์Šน์„ ์ฐจ์ง€ํ•œ Inception[11]์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. Inception ๋ชจ๋ธ์—์„œ๋„ ๊ธฐ์กด ๋ชจ๋ธ์˜ ๋ณต์žก์„ฑ ๋ฐ ๋ฌธ์ œ์ ์„ ๋ณด์™„ํ•˜๊ณ  ์„ฑ๋Šฅ์„ ๋†’์ธ Inception V3๋ฅผ ์„ ํƒํ•˜์˜€๋‹ค. Inception ๋„คํŠธ์›Œํฌ๋Š” ์ด์ „์— ์“ฐ์˜€๋˜ ๋„คํŠธ์›Œํฌ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ํ•™์Šต์˜ ๋ง์„ ์ข€ ๋” ๊นŠ๊ฒŒ ๊ฐ€์ ธ๊ฐ€ ํ•™์Šต ์„ฑ๋Šฅ์„ ๋†’์˜€๋‹ค. ํ•˜์ง€๋งŒ ๋ง์ด ๊นŠ์–ด์ง€๋ฉด ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด์„œ ๊ณผ์ ํ•ฉ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๊ทธ๋ž˜์„œ ์ข‹์ง€ ์•Š์€ ํ•™์Šต ํšจ์œจ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์—ฐ์‚ฐ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜์—ฌ ํ•™์Šต์— ์˜ค๋žœ ์‹œ๊ฐ„์ด ์†Œ์š”๋˜๊ฒŒ ๋œ๋‹ค. Inception ๋ชจ๋“ˆ์€ ์ด๋Ÿฐ ๊นŠ์€ ๋ง์—์„œ ์˜ค๋Š” ๋ถ€์ž‘์šฉ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ปจ๋ณผ๋ฃจ์…˜ ๋ง์„ ๋ณ‘๋ ฌ๋กœ ์—ฐ๊ฒฐํ•˜์˜€๊ณ  ํฌ๊ธฐ๊ฐ€ ํฐ 3x3์ด๋‚˜ 5x5๋Š” ์•ž์— 1x1 ์ปจ๋ณผ๋ฃจ์…˜ ๋ง์„ ํ†ตํ•ด ์ฐจ์›์„ ์ค„์—ฌ ์—ฐ์‚ฐ๋Ÿ‰์„ ์กฐ์ ˆํ•˜์˜€๋‹ค. Inception V3์—์„œ๋Š” ์—ฐ์‚ฐ๋Ÿ‰์ด ๋งŽ์€ 5x5 ์ด์ƒ์˜ ๋ง์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ 3x3์œผ๋กœ ๋Œ€์ฒดํ•˜์—ฌ ์—ฐ์‚ฐ๋Ÿ‰์„ ๊ฐ์†Œ์‹œ์ผฐ๋‹ค. ์—๋ฒ„๋ฆฌ์ง€ ํ’€๋ง๊ณผ ๋งฅ์Šค ํ’€๋ง์„ ์ „์ฒด์ ์ธ ๋ง์—์„œ ์‚ฌ์šฉํ•˜๋ฉฐ ์ปจ๋ณผ๋ฃจ์…˜์— ์˜ํ•œ ์ฐจ์›์ด ๋†’์•„์ง€๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 2๋Š” Inception V3๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ํ•˜๋‚˜์˜ Inception ๋ชจ๋“ˆ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

๊ทธ๋ฆผ. 2. Inception module

Fig. 2. Inception module

../../Resources/kiee/KIEE.2020.69.2.349/fig2.png

2.3 ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ ๋ฐ ํ•™์Šต ์ง„ํ–‰

๊นŠ์€ ๋ง์„ ์ด์šฉํ•˜์—ฌ ํ•™์Šตํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹์€ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ํŠน์ง•์„ ๊ณผํ•˜๊ฒŒ ํ•™์Šตํ•˜์—ฌ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ์˜ ์˜ค์ฐจ๊ฐ€ ์ปค์ง€๋Š” ๊ณผ์ ํ•ฉ์˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๊ณผ์ ํ•ฉ์— ๋Œ€ํ•œ ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ํ•ด๊ฒฐ์ฑ…์€ ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋ฅผ ๋งŽ์ด ํ™•๋ณดํ•ด ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋งŽ์•„์ง€๋ฉด ํ•™์Šต์˜ ์„ฑ๋Šฅ๋„ ์ข‹์•„์ง„๋‹ค. ํ•˜์ง€๋งŒ ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต์„ ์œ„ํ•ด ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ์ž๋ณธ์ด ์†Œ๋น„๋œ๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€์—์„œ ์ฃผ๊ด€ํ•˜๊ณ  ์žˆ๋Š” AI Open Innovation Hub(AI Hub)์—์„œ ์ œ๊ณต๋œ ํ† ๋งˆํ†  ์žŽ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.[12] ํ† ๋งˆํ†  ์žŽ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฐœ์ˆ˜๋Š” ์ด 17,090์žฅ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ๋Š” ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋‰˜๋Š”๋ฐ ์ค„๊ธฐ์— ์žŽ์ด ๋‹ฌ๋ฆฐ ๋†๊ฐ€์—์„œ ์ดฌ์˜๋œ ๋†๊ฐ€ ์ด๋ฏธ์ง€์™€ ์žŽ๋งŒ ๋”ฐ๋กœ ๋–ผ์„œ ์ฝ˜ํฌ๋ฆฌํŠธ ๋ฐ”๋‹ฅ์—์„œ ์ดฌ์˜ํ•œ ์‹คํ—˜์‹ค ์ด๋ฏธ์ง€๊ฐ€ ์žˆ๋‹ค. AI Hub์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์˜ˆ์‹œ๋Š” ๊ทธ๋ฆผ 3์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ทธ๋ฆผ. 3. AI Hub ๋ฐ์ดํ„ฐ ์„ธํŠธ

Fig. 3. AI Hub Dataset

../../Resources/kiee/KIEE.2020.69.2.349/fig3.png

๋ณ‘์ถฉํ•ด ์ข…๋ฅ˜๋Š” ์ด 14๊ฐ€์ง€๋กœ ๊ตฌ์„ฑ์ด ๋˜์–ด์žˆ๋‹ค. ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋Š” ๋ณ‘์ถฉํ•ด๋งˆ๋‹ค ์ฐจ์ด๊ฐ€ ์žˆ์–ด ์ •์ƒ์˜ ๊ฒฝ์šฐ๋Š” 9,955์žฅ์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋งŽ์ง€๋งŒ 5์žฅ ๋ฏธ๋งŒ์˜ ๋ณ‘์ถฉํ•ด ๋ฐ์ดํ„ฐ๋„ ์žˆ๋‹ค. 40์žฅ ๋ฏธ๋งŒ์ธ ๋ณ‘์ถฉํ•ด๋Š” ํ•™์Šต์— ์˜๋ฏธ๊ฐ€ ์—†๋‹ค๊ณ  ์ƒ๊ฐํ•˜์˜€๊ณ  ์ด๋ฏธ์ง€์˜ ๊ฐœ์ˆ˜๊ฐ€ 40์žฅ์ด ๋„˜๋Š” ๋ณ‘์ถฉํ•ด๋ฅผ ์„ ๋ณ„ํ•˜์—ฌ ํ•™์Šต์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ •์ƒ์ธ ํ† ๋งˆํ†  ์žŽ๊ณผ ๋‚˜๋จธ์ง€ 8์ข…์˜ ๋ณ‘์ถฉํ•ด๋ฅผ ํ•™์Šต์— ์‚ฌ์šฉํ•˜๊ธฐ๋กœ ํ•˜์˜€๋‹ค.

ํ‘œ 1. ๋ณ‘์ถฉํ•ด ์ข…๋ฅ˜ ๋ฐ ๊ฐฏ์ˆ˜

Table 1. Types and counts of plant disease

../../Resources/kiee/KIEE.2020.69.2.349/tbl1.png

์„ ์ •๋œ ๋ณ‘์ถฉํ•ด๋Š” ์•„๋ฉ”๋ฆฌ์นด ์žŽ๊ตดํŒŒ๋ฆฌ(Liriomyza triflolii), ์ ๋ฌด๋Šฌ๋ณ‘(Leaf spot), ์žŽ๊ณฐํŒก์ด๋ณ‘(Leaf mold), ํ™ฉํ™”์žŽ๋ง๋ฆผ๋ฐ”์ด๋Ÿฌ์Šค(Yellow leaf curl virus), ๊ถค์–‘๋ณ‘(Clavibacter michiganensis), ์ฒญ๋ฒŒ๋ ˆ(Leaf bite), ํ† ๋งˆํ† ํ‡ด๋ก๋ฐ”์ด๋Ÿฌ์Šค(Tomato chlorosis virus) ๊ทธ๋ฆฌ๊ณ  ํฐ๊ฐ€๋ฃจ๋ณ‘(Powdery mildew)์ด๋‹ค. ์—ฐ๊ตฌ์— ์‚ฌ์šฉํ•˜๊ธฐ๋กœ ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ถ”ํ›„ ์„ฑ๋Šฅํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋น„์œจ์„ 80 : 20์œผ๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ์ž์„ธํ•œ ๋ชฉ๋ก์€ ํ‘œ 1๊ณผ ๊ฐ™๋‹ค. ์ •์ƒ๊นŒ์ง€ ํฌํ•จํ•˜์—ฌ ์ด 17,063์žฅ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ๋ณ„ํ•˜์˜€๋‹ค. ํ•™์Šต์—๋Š” ์ „์ฒด์˜ 80%์ธ 13,650์žฅ์„ ์‚ฌ์šฉํ•˜์˜€๊ณ  ์„ฑ๋Šฅํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋กœ๋Š” 20%์ธ 3,413์žฅ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์‹คํ—˜์‹ค ์ด๋ฏธ์ง€๋Š” ํ•™์Šต ๋ฐ์ดํ„ฐ์— 1,221์žฅ ํฌํ•จ์ด ๋˜์–ด์žˆ๊ณ  ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์—๋Š” 383์žฅ์ด ์žˆ์–ด ์ด 1,604์žฅ์ด ๋ฐ์ดํ„ฐ์— ์†ํ•ด์žˆ๋‹ค.

3. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ

ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” AI Hub ํ† ๋งˆํ†  ์žŽ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ 80%๋ฅผ ๋ณ‘์ถฉํ•ด ๋ณ„๋กœ ๋ฌด์ž‘์œ„๋กœ ๋ฝ‘์•„ ํ•™์Šต์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚จ ๋„คํŠธ์›Œํฌ๋Š” CNN์˜ ํ•œ ์ข…๋ฅ˜์ธ Inception V3 ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผฐ๋‹ค. ํ•™์Šต์ด ์™„๋ฃŒ๋œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•™์Šต์— ์‚ฌ์šฉํ•˜์ง€ ์•Š์€ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค. ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋ณ‘์ถฉํ•ด ๋ถ„๋ฅ˜ ๋ชจ๋ธ์— ๋„ฃ์–ด์„œ ๋ณ‘์ถฉํ•ด๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ณ  ํ•™์Šต์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๊ณผ์ •์€ ๊ทธ๋ฆผ 4์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ทธ๋ฆผ. 4. ๋ณ‘์ถฉํ•ด ํ•™์Šต ๋ฐ ๋ถ„๋ฅ˜ ๊ณผ์ •

Fig. 4. Plant disease training and classification process

../../Resources/kiee/KIEE.2020.69.2.349/fig4.png

๋ถ„๋ฅ˜ ๋ชจ๋ธ์ด 1์ˆœ์œ„๋กœ ์˜ˆ์ธกํ•œ ๋ณ‘์ถฉํ•ด ์ข…๋ฅ˜๋ฅผ ์ •๋‹ต์œผ๋กœ ์ƒ๊ฐํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ์ •๋ฆฌํ–ˆ๋‹ค. ์ด๋ฏธ์ง€๋กœ ๋ถ„๋ฅ˜ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ–ˆ์„ ๋•Œ ๊ทธ๋ฆผ 5์™€ ๊ฐ™์ด ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ํ‘œ 2๋Š” ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ํ†ตํ•ด ์˜ˆ์ธก์‹œ์ผฐ์„ ๋•Œ์˜ ๋ถ„๋ฅ˜ ๊ฒฐ๊ณผ์ด๋‹ค.

๊ทธ๋ฆผ. 5. ๋ณ‘์ถฉํ•ด ์˜ˆ์ธก ๊ฒฐ๊ณผ

Fig. 5. Plant disease prediction result

../../Resources/kiee/KIEE.2020.69.2.349/fig5.png

ํ‘œ 2. ํ•™์Šต ๋ชจ๋ธ ๊ฒฐ๊ณผ

Table 2. Prediction results

../../Resources/kiee/KIEE.2020.69.2.349/tbl2.png

๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ๊ฐ’์„ ๊ตฌํ•˜์˜€๋‹ค. ์ „์ฒด ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์—์„œ ์ •๋‹ต์„ ๋งžํžŒ ๋น„์œจ์ธ Accuracy๋ฅผ ๊ณ„์‚ฐํ•ด 0.99๋กœ ๋†’์€ ์ˆ˜์น˜๊ฐ€ ๋‚˜์™”๋‹ค. ํ•˜์ง€๋งŒ ๋ฒ”์ฃผ๋งˆ๋‹ค ๋ฐ์ดํ„ฐ ์ˆ˜์˜ ์ฐจ์ด๊ฐ€ ํฌ๊ฒŒ ๋‚˜๋ฏ€๋กœ ์ „์ฒด์˜ ์ •ํ™•๋„๋กœ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์ง€ ์•Š๊ณ  Precision๊ณผ Recall์„ ๋ฒ”์ฃผ๋ณ„๋กœ ๊ตฌํ•ด ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋‚˜์˜จ ์ˆ˜์น˜๋“ค์˜ ํ‰๊ท ๊ฐ’์„ ๋ณ‘์ถฉํ•ด ๋ถ„๋ฅ˜ ๋ชจ๋ธ์˜ Precision๊ณผ Recall๋กœ ํ•˜์˜€์œผ๋ฉฐ ๊ฐ’์„ ๊ตฌํ•œ ํ›„์—๋Š” F1 Score๋ฅผ ๊ตฌํ•˜์˜€๋‹ค. F1 Score๋Š” ์กฐํ™”ํ‰๊ท ์„ ์ด์šฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•  ๋•Œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ต์  ์ •ํ™•ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. Accuracy, Precision, Recall, F1 Score๋ฅผ ๊ตฌํ•˜๋Š” ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

(1)
Accuracy=TP+TNTP+FN+FP+TN

(2)
Precision=TPTP+FP

(3)
Recall=TPTP+FN

(4)
F1 Score=2ร—Precisionร—RecallPrecision+Recall

ํ˜ผ๋™ํ–‰๋ ฌ(Confusion matrix)์„ ๊ตฌ์„ฑํ•˜๋Š” True Positive(TP), False Negative(FN), False Positive(FP) ๊ทธ๋ฆฌ๊ณ  True Negative(TN)๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์œ„ ์ˆ˜์‹์„ ์ด์šฉํ•˜์—ฌ ๋ฒ”์ฃผ๋ณ„๋กœ Precision๊ณผ Recall์˜ ํ‰๊ท ๊ฐ’๋“ค์„ ๊ตฌํ•˜์˜€๋‹ค. ๋ฒ”์ฃผ๋ณ„๋กœ Precision๊ณผ Recall์„ ๊ณ„์‚ฐํ•œ ๊ฐ’์€ ํ‘œ 3์— ์ •๋ฆฌํ–ˆ๋‹ค. ์˜ˆ์ธกํ•œ ์ •๋‹ต์—์„œ ์‹ค์ œ ์ •๋‹ต๋ฅ ์„ ์˜๋ฏธํ•˜๋Š” Precision์˜ ๊ฐ’์€ 0.97์ด๋ž€ ๊ฐ’์ด ๋‚˜์™”์œผ๋ฉฐ ์‹ค์ œ ์ •๋‹ต์—์„œ ์‹ค์ œ ์ •๋‹ต์„ ์˜ˆ์ธกํ•œ ๋น„์œจ์ธ Recall ๊ฐ’์€ 0.90์˜ ๊ฐ’์ด ๋‚˜์™”๋‹ค. ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์ „์ฒด์ ์ธ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” F1 Score๋Š” 0.93์œผ๋กœ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.

ํ‘œ 3. ์„ฑ๋Šฅ ํ‰๊ฐ€ํ‘œ

Table 3. Performance evaluation table

../../Resources/kiee/KIEE.2020.69.2.349/tbl3.png

ํ† ๋งˆํ† ํ‡ด๋ก๋ฐ”์ด๋Ÿฌ์Šค์™€ ์ฒญ๋ฒŒ๋ ˆ์˜ ๊ฒฝ์šฐ ํŠนํžˆ Recall์ด ๋‚ฎ์€ ๋ชจ์Šต์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ํ† ๋งˆํ† ํ‡ด๋ก๋ฐ”์ด๋Ÿฌ์Šค์˜ ๊ฒฝ์šฐ ์žŽ์— ํ‡ด๋ก, ํ™ฉํ™” ๋“ฑ์˜ ์ฆ์ƒ์ด ๋‚˜ํƒ€๋‚œ๋‹ค. ํ™ฉํ™”๋œ ์žŽ์€ ํ™ฉํ™”์žŽ๋ง๋ฆผ๋ฐ”์ด๋Ÿฌ์Šค์™€ ๋น„์Šทํ•˜๋‹ค๊ณ  ํŒ๋‹จํ•˜์—ฌ ์˜ค๋ถ„๋ฅ˜๋ฅผ ์ผ์œผ์ผฐ๋‹ค. ํ‡ด๋ก๋œ ์žŽ์€ ์›๋ž˜ ์žŽ์˜ ์ƒ‰๊ณผ ์ฐจ์ด๊ฐ€ ํฌ๊ฒŒ ๋‚˜์ง€ ์•Š์•„ ์ •์ƒ์ธ ์žŽ๊ณผ ๋น„์Šทํ•˜์—ฌ ์ •์ƒ์œผ๋กœ ๋ถ„๋ฅ˜ํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ์ฒญ๋ฒŒ๋ ˆ๋Š” ์žŽ์— ๊ฐ‰์•„ ๋จนํžŒ ํ”์ ์ด ๋‚จ์•„์žˆ๋‹ค. ํ…Œ์ŠคํŠธ ์ด๋ฏธ์ง€ ์ค‘์—์„œ ์žŽ์˜ ์•ž๋ฉด์ด ๋ณด์ด์ง€ ์•Š๋Š” ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ๋ณ‘์ถฉํ•ด๋ฅผ ์ž˜๋ชป ๋ถ„๋ฅ˜๋ฅผ ํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์žŽ์ด ๊ฐ‰์•„ ๋จนํžŒ ๋ถ€๋ถ„์ด ์ค‘๊ฐ„ ๋ถ€๋ถ„์ผ ๊ฒฝ์šฐ ๋ถ„๋ฅ˜๋ฅผ ์ž˜ ํ•ด๋‚ด๋Š” ๋ชจ์Šต์„ ๋ณด์ด์ง€๋งŒ, ์žŽ์˜ ๋๋ถ€๋ถ„์„ ๊ฐ‰์•„ ๋จนํžŒ ์ด๋ฏธ์ง€๋Š” ์ž˜๋ชป ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชจ์Šต์„ ๋ณด์˜€๋‹ค.

4. ๊ฒฐ ๋ก 

๋ณ‘์ถฉํ•ด๋Š” ๊ด€๋ จ ์ „๋ฌธ์ง€์‹๊ณผ ๋ฐฉ์ œ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋Š” ์ธ๋ ฅ๋งŒ ์žˆ์œผ๋ฉด ์ถฉ๋ถ„ํžˆ ์˜ˆ๋ฐฉ ๋ฐ ๋ฐฉ์ œ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ๋†๊ฐ€๊ฐ€ ๋ชจ๋“  ๋ณ‘์ถฉํ•ด๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ์˜ˆ๋ฐฉ๊นŒ์ง€ ํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š๋‹ค. ์ฆ์ƒ์„ ๋ณด๊ณ  ๋ณ‘์ถฉํ•ด๋ฅผ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์—†๋Š” ๋†๊ฐ€์˜ ๊ฒฝ์šฐ์—๋Š” ์ œ๋Œ€๋กœ ๋ฐฉ์ œ๋ฅผ ํ•˜์ง€ ๋ชปํ•ด ์‹œ๊ธฐ๋ฅผ ๋†“์ณ ํ”ผํ•ด๋ฅผ ๋ณผ ์ˆ˜๋„ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ† ๋งˆํ† ๋ฅผ ์ฃผ ์ž‘๋ฌผ๋กœ ํ•˜์—ฌ ์˜์ƒ์„ ์ด์šฉํ•œ ํ† ๋งˆํ†  ๋ณ‘์ถฉํ•ด ํƒ์ง€ ๋ฐ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹œ์Šคํ…œ์€ ํ† ๋งˆํ†  ์žŽ์˜ ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•˜์„ ๋•Œ ๊ทธ ์žŽ์ด ๋ณ‘์ถฉํ•ด์— ๊ฑธ๋ ธ๋Š”์ง€์— ๋Œ€ํ•œ ํƒ์ง€๋ฅผ ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ณ‘์ถฉํ•ด์— ๊ฑธ๋ ธ๋‹ค๋ฉด ๋ณ‘์ถฉํ•ด์˜ ์ข…๋ฅ˜๋ฅผ ๋ถ„๋ฅ˜ํ•ด์ฃผ์–ด ๋†์—… ์ข…์‚ฌ์ž๊ฐ€ ๋ณ‘์ถฉํ•ด์— ๋งž๋Š” ๋ฐฉ์ œ๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค.

์‹œ์Šคํ…œ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋Š” AI Hub์—์„œ ์ œ๊ณต๋˜๊ณ  ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ •์ƒ์„ ํฌํ•จํ•œ 9๊ฐ€์ง€์˜ ๋ฒ”์ฃผ๋กœ ๋ถ„๋ฅ˜ํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์„ฑํ–ˆ๋‹ค. ๋„คํŠธ์›Œํฌ๋Š” Inception V3๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•™์Šตํ•˜์˜€๋‹ค. ํ•™์Šต์ด ๋๋‚˜๊ณ  ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•ด ๋ณด์•˜์„ ๋•Œ Precision 0.97, Recall 0.90์˜ ๊ฐ’์ด ๋‚˜์™”๋‹ค. ์ „์ฒด์ ์ธ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ์ˆ˜์น˜์ธ F1 Score๋ฅผ ๊ตฌํ–ˆ์„ ๋•Œ 0.93์˜ ๊ฐ’์ด ๋‚˜์™”๋‹ค. Precision์ด Recall์— ๋น„ํ•ด์„œ ๋†’์€ ์ˆ˜์น˜๊ฐ€ ๋‚˜์™”๋Š”๋ฐ ์ด๋Š” ํ•™์Šต๋œ ๋ชจ๋ธ์ด ๋ณ‘์ถฉํ•ด๋ฅผ ์˜ˆ์ธกํ–ˆ์„ ๋•Œ ์˜ˆ์ธก๊ฐ’์ด ์‹ค์ œ ์ •๋‹ต์ผ ํ™•๋ฅ ์ด ๋†’๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋ฐ˜๋ฉด์— ์‹ค์ œ ์ •๋‹ต ์ค‘์—์„œ ์‹ค์ œ ์ •๋‹ต์„ ์–ผ๋งˆ๋‚˜ ์˜ˆ์ธกํ–ˆ๋Š”์ง€์— ๋Œ€ํ•œ ์„ฑ๋Šฅ ์ง€ํ‘œ Recall ๊ฐ’์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฐ’์ด ๋‚˜์™”๋‹ค.

ํ•™์Šต๋ชจ๋ธ์€ ์ข‹์€ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”์ง€๋งŒ ๋ช‡ ๊ฐ€์ง€ ํ•œ๊ณ„์ ์ด ์žˆ๋‹ค. ์šฐ์„  ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•˜๋‹ค. ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ํ•™์Šต์„ ํ•  ๋•Œ๋„ ์ •์ƒ์ด ๋ฐ์ดํ„ฐ์˜ 2๋ฐฐ ์ด์ƒ์„ ์ฐจ์ง€ํ•˜๋ฉฐ ์•„๋ฉ”๋ฆฌ์นด์žŽ๊ตดํŒŒ๋ฆฌ์™€ ์ ๋ฌด๋Šฌ๋ณ‘๊นŒ์ง€ ๋”ํ•˜๋ฉด ์ „์ฒด ๋ฐ์ดํ„ฐ์˜ 80%๋ฅผ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•  ๋•Œ๋„ ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜๊ฐ€ ๋งŽ์€ ๋ฒ”์ฃผ๋Š” ๋ช‡ ์žฅ์˜ ์ฐจ์ด๋กœ ํฌ๊ฒŒ ์ˆ˜์น˜๊ฐ€ ๋ณ€ํ•˜์ง€ ์•Š์ง€๋งŒ ํ† ๋งˆํ† ํ‡ด๋ก๋ฐ”์ด๋Ÿฌ์Šค๋‚˜ ํฐ๊ฐ€๋ฃจ๋ณ‘๊ฐ™์ด ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๊ฐ€ ๋งŽ์ง€ ์•Š์€ ๋ฒ”์ฃผ๋Š” ๋ช‡ ์žฅ์˜ ์ฐจ์ด๋กœ ์ˆ˜์น˜๊ฐ€ ๋งŽ์ด ๋ณ€ํ•ด ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•œ๋‹ค. ์ •ํ™•ํ•œ ์„ฑ๋Šฅ์„ ๊ฒ€์‚ฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ด๋ฏธ์ง€์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋งŽ์€ ๋ณ‘์ถฉํ•ด ๋ฒ”์ฃผ์—์„œ ์ด๋ฏธ์ง€๋ฅผ ๋ฝ‘์•„ ๋‹ค๋ฅธ ๋ณ‘์ถฉํ•ด์™€ ๊ฐœ์ˆ˜๋ฅผ ๋น„์Šทํ•˜๊ฒŒ ๋งž์ถ”๊ฑฐ๋‚˜, ๋‹ค๋ฅธ ๋ณ‘์ถฉํ•ด์˜ ์ด๋ฏธ์ง€๋ฅผ ํ™•๋Œ€ ๋ฐ ์ถ•์†Œํ•˜๋Š” ๋ฐฉ๋ฒ• ๋“ฑ์„ ์ด์šฉํ•ด ์ˆ˜๋ฅผ ๋Š˜๋ฆฐ๋‹ค๋ฉด ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋„ ๋งŽ์•„์ ธ ์ •ํ™•๋„๊ฐ€ ์ƒ์Šนํ•˜๊ณ  ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋ถˆ๊ท ํ˜•๋„ ํ•ด๊ฒฐ๋  ๊ฒƒ์ด๋‹ค.

์ถ”ํ›„ ์—ฐ๊ตฌ๋กœ๋Š” ๋ณ‘์ถฉํ•ด ํƒ์ง€ ์‹๋ฌผ์„ ํ† ๋งˆํ† ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค๋ฅธ ์ž‘๋ฌผ๊นŒ์ง€ ํ™•๋Œ€ํ•˜๊ณ , ๋” ๋งŽ์€ ์ข…๋ฅ˜์˜ ๋ณ‘์ถฉํ•ด๋ฅผ ํ•™์Šต์‹œ์ผœ ์‹ค์ œ ๋†๊ฐ€์—์„œ ๋ฒ”์šฉ์„ฑ ์žˆ๊ฒŒ ํ™œ์šฉํ•˜๋ฉฐ ๋ณ‘์ถฉํ•ด๋กœ ์ธํ•œ ํ”ผํ•ด๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2017R1E1A1A03070297). This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program(IITP- 2019-2018-0-01433) supervised by the IITP(Institute for Information & communications Technology Promotion).

References

1 
Korean Statistical Information Service, Tomato Production SurveyGoogle Search
2 
Korean Statistical Information Service, Agricultural SurveyGoogle Search
3 
Y. Fang, R. P. Ramasamy, 2015, Current and prospective methods for plant disease detection, Biosensors, Vol. 5, pp. 537-561DOI
4 
A.-K. Mahlein, 2016, Plant disease detection by imaging sensorsโ€“parallels and specific demands for precision agriculture and plant phenotyping, Plant Disease, Vol. 100, pp. 241-251DOI
5 
K. P. Ferentinos, 2018, Deep learning models for plant disease detection and diagnosis, Computers and Electronics in Agriculture, Vol. 145, pp. 311-318DOI
6 
H. DurmuลŸ, E. O. GรผneลŸ, M. Kฤฑrcฤฑ, 2017, Disease detection on the leaves of the tomato plants by using deep learning, in Proc. of 2017 6th International Conference on Agro-Geoinformatics, pp. 1-5DOI
7 
S. P. Mohanty, D. P. Hughes, M. Salathรฉ, 2016, Using deep learning for image-based plant disease detection, Frontiers in Plant Science, Vol. 7, pp. 1419DOI
8 
Y. LeCun, Y. Bengio, G. Hinton, 2015, Deep learning, Nature, Vol. 521, pp. 436-444DOI
9 
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778DOI
10 
J. Hu, L. Shen, G. Sun, 2018, Squeeze-and-excitation networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141DOI
11 
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, 2016, Rethinking the inception architecture for computer vision, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818-2826DOI
12 
AI Open Innovation Hub, http://www.aihub.or.kr/Google Search

์ €์ž์†Œ๊ฐœ

ํ•จํ˜„์‹ (Hyun-sik Ham)
../../Resources/kiee/KIEE.2020.69.2.349/au1.png

He is currently working toward a B.S. and M.S. degrees in Department of Electronic Engineering from Kangwon National University, Korea.

๊น€๋™ํ˜„ (Dong-hyun Kim)
../../Resources/kiee/KIEE.2020.69.2.349/au2.png

He received the B.S. degree in Electrical and Electronic Engineering from Kangwon National University, Korea in 2018.

He is currently working toward the M.S. degree in Interdisciplinary Graduate Program for BIT Medical Convergence from Kangwon National University, Korea.

์ฑ„์ •์šฐ (Jung-woo Chae)
../../Resources/kiee/KIEE.2020.69.2.349/au3.png

He received the B.S. degree in Electrical and Electronic Engineering from Kangwon National University, Korea in 2019.

He is currently working toward the M.S. degree in Interdisciplinary Graduate Program for BIT Medical Convergence from Kangwon National University, Korea.

์ด์‹ ์•  (Sin-ae Lee)
../../Resources/kiee/KIEE.2020.69.2.349/au4.png

She received her B.S. degree in Electrical and Electronic Engineering from Kangwon National University, Korea in 2018.

She is currently working toward the M.S. degree in Interdisciplinary Graduate Program for BIT Medical Convergence from Kangwon National University, Korea.

๊น€์œค์ง€ (Yun-ji Kim)
../../Resources/kiee/KIEE.2020.69.2.349/au5.png

She is currently working toward a B.S. and M.S. degrees in Department of Electronic Engineering from Kangwon National University, Korea.

์กฐํ˜„์šฑ (Hyun Uk Cho)
../../Resources/kiee/KIEE.2020.69.2.349/au6.png

He received the Ph.D. degree in School of Environmental Science and Engineering from Pohang University of Science and Technology, Korea in 2016.

He is currently a professor in Department of Marine Environmental Engineering, Gyeongsang National University, Korea.

์กฐํ˜„์ข… (Hyun-chong Cho)
../../Resources/kiee/KIEE.2020.69.2.349/au7.png

He received his MS and PhD degrees in Electrical and Computer Engineering from the University of Florida, USA in 2009.

During 2010-2011, he was a Research Fellow at the University of Michigan, Ann Arbor, USA.

From 2012 to 2013, he was a Chief Research Engineer in LG Electronics, Korea.

He is currently a professor with the Department of Electronics Engineering and Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University, Korea.