Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers


D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, 2018, Identifying medical diagnoses and treatable diseases by image-based deep learning, Cell, Vol. 172, No. 5, pp. 1122-1131DOI
J. Kugelman, D. Alonso-Caneiro, S. A. Read, J. Hamwood, S. J. Vincent, F. K. Chen, M. J. Collins, 2019, Automatic choroidal segmentation in oct images using supervised deep learning methods, Scientific reports, Vol. 9, No. 1, pp. 1-13DOI
J. Wang, R. Ju, Y. Chen, L. Zhang, J. Hu, Y. Wu, W. Dong, J. Zhong, Z. Yi, 2018, Automated retinopathy of prematurity screening using deep neural networks, EBioMedicine, Vol. 35, pp. 361-368DOI
X. Li, T. Pang, B. Xiong, W. Liu, P. Liang, T. Wang, 2017, Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification, in 2017 10th international congress on image and signal processing biomedical engineering and informatics (CISP-BMEI), pp. 1-11DOI
C. S. Lee, D. M. Baughman, A. Y. Lee, 2017, Deep learning is effective for classifying normal versus age-related macular degeneration oct images, Ophthalmology Retina, Vol. 1, No. 4, pp. 322-327DOI
S. Kaymak, A. Serener, 2018, Automated age-related macular degeneration and diabetic macular edema detection on oct images using deep learning, in 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 265-269DOI
E. Strickland, 2019, Ibm watson, heal thyself: How ibm overpromised and underdelivered on ai health care, IEEE Spectrum, Vol. 56, No. 4, pp. 24-31DOI
G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, 2017, Densely connected convolutional networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708Google Search
B. Tan, A. Wong, K. Bizheva, 2018, Enhancement of morphological and vascular features in oct images using a modified bayesian residual transform, Biomedical optics express, Vol. 9, No. 5, pp. 2394-2406DOI
D. P. Kingma, J. Ba, 2014, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980Google Search
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, 2014, Dropout: a simple way to prevent neural networks from overfitting, The journal of machine learning research, Vol. 15, No. 1, pp. 1929-1958Google Search
M. Schuster, K. Paliwal, 1997, Bidirectional recurrent neural networks, IEEE Transactions on Signal Processing, Vol. 45, No. 11, pp. 2673-2681DOI
P. Y. Simard, D. Steinkraus, J. C. Platt, 2003, Best practices for convolutional neural networks applied to visual document analysis, in Icdar, Vol. 3Google Search