• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. H. Eto, J. Undrill, P. Mackin, R. Daschmans, B. Williams, B. Haney, R. Hunt, J. Ellis, H. Illian, C. Martinez, M. O’Malley, K. Coughlin, K. H. LaCommare, Dec. 2010, Use of frequency response metrics to assess the planning and operating requirements for reliable integration of variable renewable generation, Lawrence Berkeley National Laboratory, Berkeley, Vol. ca, No. usa, Tech. Rep. LBNL-4142EDOI
2 
of Trade Ministry, and Energy Industry, November. 2019, Standards for maintaining power system reliability and electricity quality, Ministry of Trade, Vol. industry and energy notice, No. 2019- 176Google Search
3 
J. Machowski, J. W. Bialek, J. R. Bumby, 2008, Frequency stability and control, in Power System Dynamics: Stability and Control, Vol. 2nd ed. wiltshire: john wiley & sons, Ltd.Google Search
4 
J. Morren, S. W. H. de Haan, W. L. Kling, J. A. Ferreira, Feb. 2006, Wind turbines emulating inertia and supporting primary frequency control, IEEE Trans. Power Syst., Vol. 21, No. 1, pp. 433-434DOI
5 
J. F. Conroy, R. Watson, May. 2008, Frequency response capability of full converter wind turbine generators in comparison to conventional generation, IEEE Trans. Power Syst., Vol. 23, No. 2, pp. 649-656DOI
6 
J. M. Mauricio, A. Marano, A. Gómez-Expósito, J. L. M. Ramos, Feb. 2009, Frequency regulation contribution through variable-speed wind energy conversion systems, IEEE Trans. Power Syst., Vol. 24, No. 1, pp. 173-180DOI
7 
I. D. Margaris, S. A. Papathanassiou, N. D. Hatziargyriou, A. D. Hansen, P. Sørensen, Apr. 2012, Frequency control in autonomous power systems with high wind power penetration, IEEE Trans. Sustain. Energy, Vol. 3, No. 2, pp. 189-199DOI
8 
W. Bao, L. Ding, Y. C. Kang, L. Sun, Nov. 2023, Closed-Loop synthetic inertia control for wind turbine generators in association with slightly over-speeded deloading operation, IEEE Trans. Power Syst., Vol. 38, No. 6, pp. 5022-5032DOI
9 
J. Lee, G. Jang, E. Muljadi, F. Blaabjerg, Z. Chen, Y. C. Kang, Sep. 2016, Stable short-term frequency support using adaptive gains for a DFIG-based wind power plant, IEEE Trans. Energy Conversion, Vol. 31, No. 3, pp. 1068-1079DOI
10 
M. Hwang, E. Muljadi, G. Jang, Y. C. Kang, May. 2017, Disturbance- adaptive short-term frequency support of a DFIG associated with the variable gain based on the ROCOF and rotor speed, IEEE Trans. Power Syst., Vol. 32, No. 3, pp. 1873-1881DOI
11 
W. Chen, T. Zheng, H. Nian, D. Yang, W. Yang, H. Geng, 2023, Multi-objective adaptive inertia and droop control method of wind turbine generators, IEEE Trans. Ind. App.DOI
12 
N. R. Ullah, T. Thiringer, D. Karlsson, May. 2008, Temporary primary frequency control support by variable speed wind turbines—Potential and applications, IEEE Trans. Power Syst., Vol. 23, No. 2, pp. 601-612DOI
13 
M. Kang, J. Kim, E. Muljadi, J.-W. Park, Y. C. Kang, Nov. 2016, Frequency control support of a doubly-fed induction generator based on the torque limit, IEEE Trans. Power Syst., Vol. 31, No. 6, pp. 4575-4583DOI
14 
D. Yang, J. Kim, Y. C. Kang, E. Muljadi, N. Zhang, J. Hong, S.-H. Song, T. Zheng, May. 2018, Temporary frequency support of a DFIG for high wind power penetration, IEEE Trans. Power Syst., Vol. 33, No. 3, pp. 3428-3437DOI
15 
R. Azizipanah-Abarghooee, M. Malekpour, T. Dragicevic, F. Blaabjerg, V. Terzija, Mar. 2020, A linear inertial response emulation for variable speed wind turbines, IEEE Trans. Power Syst., Vol. 35, No. 2, pp. 1198-1208DOI
16 
D. Yang, G.-G. Yan, T. Zheng, X. Zhang, L. Hua, Jul/Aug. 2022, Fast frequency response of a DFIG based on variable power point tracking, IEEE Trans. Ind. Appl., Vol. 58, No. 4, pp. 5127-5135DOI
17 
IEC 61400-21-1, 2019, Wind energy generation systems−Part 21-1: Measurement and assessment of electrical characteristics− Wind turbinesGoogle Search
18 
ENTSO-E, May. 2019, Technical requirements for fast frequency reserve provision in the Nordic synchronous area−External documentGoogle Search
19 
EIRGRID/SONI, May. 2019, DS3 system services protocol−Regulated arrangementGoogle Search
20 
EIRGRID/SONI, May. 2020, Fast frequency response concepts and bulk power system reliability needs, NERC inverter-based resource performance task force white paperGoogle Search
21 
Candian wind energy association, Jan. 2006, Canadian grid code for wind development−Review and recommendationGoogle Search
22 
Hydro-Quebec TransEnergie, Feb. 2009, Transmission provider technical requirements for the connection of power plants to the Hydro-Quebec transmission systemsGoogle Search
23 
Hydro-Quebec TransEnergie, Jan. 2019, Technical requirement for the connection of generating stations to the Hydro-Quebec transmission systemsGoogle Search
24 
Ontario IESO, Dec. 2019, Market manual 2: Market administration−Part 2.20: Performance validationGoogle Search
25 
ENTSO-E, Apr. 2016, Commission regulation: Establishing a network code on requirements for grid connection of generatorsGoogle Search
26 
IEEE, Feb. 2022, IEEE standard for interconnection and interoperability of inverter-based resources (IBRs) interconnecting with associated transmission electric power systems, IEEE Std. 2800-2022, pp. 2800-2022Google Search
27 
N. Aubut, J. Brisebois, 2011, Wind farm inertia emulation to fullfil Hydro-Quebec’s specific need, IEEE PES General Meeting, DetroitDOI
28 
M. Asmine, C-E. Langlois, N. Aubut, Mar. 2018, Inertial response from wind power plants during a frequency disturbance on the Hydro-Quebec system−event analysis and validation, IET Renew. Power Gener., Vol. 12, No. 5, pp. 515-522DOI