KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2024-12
(Vol.73 No.12)
10.5370/KIEE.2024.73.12.2326
Journal XML
XML
PDF
INFO
REF
References
1
Harriet Ndofor Foleng, Harriet Ndofor Foleng, Ndubuisi Samuel Machebe & Cynthia Ebere Nwobodo “Crop-Livestock Interaction for Sustainable Agriculture,” Innovations in Sustainable Agriculture, pp. 557-582, 2019. DOI:10.1007/978-3-030-23169-9_18
2
National Institute of Animal Science, “Smart Livestock Statistics 30,” July. 3, 2024.
3
Statistics Korea, “Livestock Farming Households Statistics,” https://kosis.kr/, 2023
4
Chen, C., Zhu, W. and Norton, T., “Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning,” Computers and Electronics in Agriculture, vol. 187, pp. 106255, 2021. DOI:10.1016/j.compag.2021.106255
5
Y. Peng, Z. Zeng, E. Lv, X. He, B. Zeng, F. Wu and Z. Li, “A real-time automated system for monitoring individual feed intake and body weight of group-housed young chickens,” Applied Sciences, vol. 12, no. 23, pp. 12339, 2022. DOI:10.3390/app122312339
6
Zheng, Z., Zhang, X., Qin, L., Yue, S. and Zeng, P., “Cows' legs tracking and lameness detection in dairy cattle using video analysis and Siamese neural networks,” Computers and Electronics in Agriculture, vol. 205, pp. 107618, 2023. DOI:10.1016/j.compag.2022.107618
7
Hu, H., Dai, B., Shen, W., Wei, X., Sun, J., Li, R. and Zhang, Y., “Cow identification based on fusion of deep parts features,” Biosystems Engineering, vol. 192, pp. 245-256, 2020. DOI:10.1016/j.biosystemseng.2020.02.001
8
Fuentes, A., Yoon, S., Park, J. and Park, D. S., “Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information,” Computers and Electronics in Agriculture, vol. 177, pp. 105627, 2020. DOI:10.1016/j.compag.2020.105627
9
Molapo, M., Tu, C., Du Plessis, D. and Du, S., “Management and monitoring of livestock in the farm using deep learning,” 2023 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), pp. 1-6, IEEE, Aug. 2023. DOI:10.1109/icABCD.2023.10220556
10
Li, Z., Song, L., Duan, Y., Wang, Y. and Song, H., “Basic motion behaviour recognition of dairy cows based on skeleton and hybrid convolution algorithms,” Computers and Electronics in Agriculture, vol. 196, pp. 106889, 2022. DOI:10.1016/j.compag.2022.106889
11
Fang, C., Li, C., Yang, P., Kong, S., Han, Y., Huang, X. and Niu, J., “Enhancing Livestock Detection: An Efficient Model Based on YOLOv8,” Applied Sciences, vol. 14, no. 11, pp. 4809, 2024. DOI:10.3390/app14114809
12
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning augmentation strategies from data,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113-123, 2019. DOI:10.1109/CVPR.2019.00020
13
H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017. DOI:10.48550/arXiv.1710.09412
14
A. Krizhevsky, “Learning multiple layers of features from tiny images,” Technical report, 2009. DOI:10.1.1.222.9220
15
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, 2009. DOI:10.1109/CVPR.2009.5206848
16
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, “Reading Digits in Natural Images with Unsupervised Feature Learning,” Neural Information Processing Systems (NIPS), vol. 2011, no. 2, pp. 4, 2011. DOI:10.48550/arXiv.1109.4165
17
Zhang, Z., Liu, C., Shen, C. & Cao, L. “Bag of freebies for training object detection neural networks,” arXiv preprint arXiv:1902.04103, 2019. DOI:10.48550/arXiv.1902.04103
18
C. Y. Wang, I. H. Yeh, and H. Y. M. Liao, “Yolov9: Learning what you want to learn using programmable gradient information,” European Conference on Computer Vision, pp. 1-21, Springer, Cham, 2025. DOI:10.1007/978-3-031-72751-1_1
19
A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020. DOI:10.48550/arXiv.2004.10934
20
C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464-7475, 2023. DOI:10.48550/arXiv.2207.02696
21
C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh, “CSPNet: A new backbone that can enhance learning capability of CNN,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390-391, 2020. DOI:10.1109/CVPRW50498.2020.00203