KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2024-12
(Vol.73 No.12)
10.5370/KIEE.2024.73.12.2371
Journal XML
XML
PDF
INFO
REF
References
1
J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238-1274, 2013.
2
K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep reinforcement learning in video games,” arXiv preprint arXiv:1912.10944, 2019.
3
L. Ouyang et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, 2022.
4
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
5
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in Neural Information Processing Systems, vol. 25, 2012.
6
H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.
7
Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network architectures for deep reinforcement learning,” Proceedings of Machine Learning Research, vol. 48, 2016.
8
A. Vaswani et al., “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
9
A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
10
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
11
H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, and W. Gao, “Pre-trained image processing transformer,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
12
Y. Gong, C. I. J. Lai, Y. A. Chung, and J. Glass, “SSAST: Self-supervised audio spectrogram transformer,” Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, no. 10, 2022.
13
OpenAI, GPT-3.5: Language Models for Natural Language Understanding, https://openai.com, 2022.
14
A. Dutech et al., “Reinforcement learning benchmarks and bake-offs II,” Advances in Neural Information Processing Systems, vol. 17, 2005.
15
A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that can solve difficult learning control problems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 834-846, 2012.
16
R. S. Sutton, and A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.
17
V. R. Konda, and J. N. Tsitsiklis, “Actor-critic algorithms,” Advances in Neural Information Processing Systems, vol. 12, 1999.
18
C. Dann, Y. Mansour, M. Mohri, A. Sekhari, and K. Sridharan, “Guarantees for epsilon-greedy reinforcement learning with function approximation,” Proceedings of the International Conference on Machine Learning, 2022.
19
R. M. Schmidt, “Recurrent neural networks (RNNs): A gentle introduction and overview,” arXiv preprint arXiv:1912.05911, 2019.
20
J. Chung, C. Gulcehre, K. Cho and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.
21
S. Hochreiter, and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
22
G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, “OpenAI Gym,” arXiv preprint arXiv:1606.01540, 2016.
23
T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” Proceedings of the International Conference on Machine Learning, 2018.
24
M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel and W. Zaremba, “Hindsight experience replay,” Advances in Neural Information Processing Systems, vol. 30, 2017.