• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and J. A. Castellanos, “A survey on active simultaneous localization and mapping: State of the art and new frontiers,” IEEE Transactions on Robotics, vol. 39, no. 3, pp. 1686-1705, 2023.DOI:10.1109/TRO.2023.3248510.DOI
2 
B. Yamauchi, “A frontier-based approach for autonomous exploration,” 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151, Monterey, USA, 1997.DOI:10.1109/CIRA.1997.613851.DOI
3 
B. Tovar, L. Munoz-Gómez, R. Murrieta-Cid, M. Alencastre-Miranda, R. Monroy, and S. Hutchinson, “Planning exploration strategies for simultaneous localization and mapping,” Robotics and Autonomous Systems, vol. 54, no. 4, pp. 314-331, 2006.DOI: 10.1016/j.robot.2005.11.006.DOI
4 
Z. Xu, D. Deng, and K. Shimada, “Autonomous UAV exploration of dynamic environments via incremental sampling and probabilistic roadmap,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2729-2736, 2021. DOI: 10.1109/LRA.2021.3062008DOI
5 
J. Huang, B. Zhou, Z. Fan, Y. Zhu, Y. Jie, L. Li, and H. Cheng, “FAEL: fast autonomous exploration for large-scale environments with a mobile robot,” IEEE Robotics and Automation Letters, vol. 8. no. 3, pp. 1667-1674, 2023. DOI: 10.1109/LRA.2023.3236573.DOI
6 
M. Keidar, and G. A. Kaminka, “Efficient frontier detection for robot exploration,” International Journal of Robotics Research, vol. 33, no. 2, pp. 215-236, 2014.DOI:10.1177/0278364913494911.DOI
7 
J. Oršulić, D. Miklić, and Z. Kovačić, “Efficient dense frontier detection for 2-d graph slam based on occupancy grid submaps,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3569-3576, 2019.DOI:10.1109/LRA.2019.2928203.DOI
8 
J. Vallvé, and J. Andrade-Cetto, “Potential information fields for mobile robot exploration,” Robotics and Autonomous Systems, vol. 69, pp. 68-79, 2015.DOI: 10.1016/j.robot.2014.08.009DOI
9 
M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake, “Gaussian processes autonomous mapping and exploration for range-sensing mobile robots,” Autonomous Robots, vol. 42, pp. 273-290, 2018.DOI:10.1007/s10514-017-9668-3.DOI
10 
S. T. O’Callaghan, and F. T. Ramos, “Gaussian process occupancy maps,” International Journal of Robotics Research, vol. 31, no. 1, 42-62, 2012. DOI:10.1177/0278364911421039.URL
11 
M. Stein, Interpolation of spatial data: Some theory for kriging, Springer Science and Business Media, 1999.URL
12 
S. Kim, and J. Kim, “Occupancy mapping and surface reconstruction using local Gaussian processes with kinect sensors,” IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1335-1346, 2013.DOI:10.1109/TCYB.2013.2272592.DOI
13 
C. K. Williams, and C. E. Rasmussen, Gaussian processes for machine learning, The MIT press, USA, 2006.URL
14 
E. Pearson, K. Doherty, and B. Englot, B, “Improving obstacle boundary representations in predictive occupancy mapping,” Robotics and Autonomous Systems, vol. 153, 2022.DOI:10.1016/j.robot.2022.104077.DOI
15 
J. Wang, and B. Englot, “Fast, accurate gaussian process occupancy maps via test-data octrees and nested bayesian fusion,” 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, pp. 1003-1010, 2016.DOI:10.1109/ICRA.2016.7487232.DOI
16 
V. Tresp, “A Bayesian committee machine,” Neural computation, vol. 12, no. 11, pp. 2719-2741, 2000. DOI:10.1162/089976600300014908.DOI
17 
https://docs.mrpt.org/reference/latest/(retrieved on Oct. 16, 2024)DOI:10.1051/e3sconf/202340104007.DOI
18 
W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,” 2016 IEEE International Conference on Robotics and Automation, pp. 1271-1278, Stockholm, Sweden, 2016.DOI:10.1109/ICRA.2016.7487258.DOI
19 
https://gaussianprocess.org/gpml/code/matlab/doc/ (retrieved on Oct. 16, 2024)URL