KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2026-01
(Vol.75 No.1)
10.5370/KIEE.2026.75.1.166
Journal XML
XML
PDF
INFO
REF
References
1
M. Cutolo, A. Sulli, V. Smith, 2013, How to perform and interpret capillaroscopy, Best practice & research clinical rheumatology, Vol. 27, No. 2, pp. 237-248
2
M. Cutolo, 2015, Atlas of capillaroscopy in rheumatic diseases
3
M. Komai, D. Takeno, C. Fujii, J. Nakano, Y. Ohsaki, H. Shirakawa, 2024, Nailfold Capillaroscopy: A Comprehensive Review on Its Usefulness in Both Clinical Diagnosis and Improving Unhealthy Dietary Lifestyles, Nutrients, Vol. 16, No. 12, pp. 1914
4
H. S. Kim, 2015, The Efficacy of Nailfold Capillaroscopy in Patients with Raynaud’s Phenomenon, Journal of Rheumatic Diseases, Vol. 22, No. 2, pp. 69-75
5
W. H. Choi, H. S. Kim, 2019, A Diagnostic Roadmap for Raynaud’s Phenomenon, The Korean Journal of Medicine, Vol. 94, No. 5, pp. 431-437
6
V. Smith, 2020, Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud's phenomenon and systemic sclerosis, Autoimmunity reviews, Vol. 19, No. 3, pp. 102458
7
H. S. Kim, 2016, The Clinical Efficacy of Nailfold Capillaroscopy in Rheumatic Diseases, The Korean Journal of Medicine, Vol. 90, No. 6, pp. 494-500
8
J. W. Yau, 2012, Global prevalence and major risk factors of diabetic retinopathy, Diabetes care, Vol. 35, No. 3, pp. 556-564
9
M. Shikama, 2021, Association of crossing capillaries in the finger nailfold with diabetic retinopathy in type 2 diabetes mellitus, Journal of diabetes investigation, Vol. 12, No. 6, pp. 1007-1014
10
P. G. Bharathi, 2023, A deep learning system for quantitative assessment of microvascular abnormalities in nailfold capillary images, Rheumatology, Vol. 62, No. 6, pp. 2325-2329
11
S. Y. Bae, O. Lee, 2021, Development of Image Analysis System for Nailfold Capillaries Using Smartphone, The Transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 6, pp. 905-910
12
M. Etehad Tavakol, A. Fatemi, A. Karbalaie, Z. Emrani, B.-E. Erlandsson, 2015, Nailfold capillaroscopy in rheumatic diseases: which parameters should be evaluated?, BioMed Research International, Vol. 2015, No. 1, pp. 974530
13
T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, 2017, Focal loss for dense object detection, pp. 2980-2988
14
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, 2014, Dropout: a simple way to prevent neural networks from overfitting, The journal of machine learning research, Vol. 15, No. 1, pp. 1929-1958
15
O. Ronneberger, P. Fischer, T. Brox, 2015, U-net: Convolutional networks for biomedical image segmentation, pp. 234-241
16
O. Oktay, 2018, Attention u-net: Learning where to look for the pancreas, arXiv preprint arXiv:1804.03999
17
V. Badrinarayanan, A. Kendall, R. Cipolla, 2017, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE transactions on pattern analysis and machine intelligence, Vol. 39, No. 12, pp. 2481-2495
18
H. Huang, 2020, Unet 3+: A full-scale connected unet for medical image segmentation, pp. 1055-1059
19
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, 2018, Encoder-decoder with atrous separable convolution for semantic image segmentation, pp. 801-818
20
D. Jha, 2019, Resunet++: An advanced architecture for medical image segmentation, pp. 225-230
21
R. Azad, 2024, Medical Image Segmentation Review: The Success of U-Net, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 46, No. 12, pp. 10076-10095
22
J. Bertels, 2019, Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice, pp. 92-100
23
K. Choi, 2016, Real-time artificial neural network for high-dimensional medical image, Journal of the Korean Society of Radiology, Vol. 10, No. 8, pp. 637-643
24
Y. Deng, 2019, Deep learning on mobile devices: a review, Mobile Multimedia/Image Processing, Security, and Applications 2019, Vol. 10993, pp. 52-66
25
T. Zhao, 2022, A survey of deep learning on mobile devices: Applications, optimizations, challenges, and research opportunities, Proceedings of the IEEE, Vol. 110, No. 3, pp. 334-354
26
P. Hu, 2020, Real-time semantic segmentation with fast attention, IEEE Robotics and Automation Letters, Vol. 6, No. 1, pp. 263-270