• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M. Cutolo, A. Sulli, V. Smith, 2013, How to perform and interpret capillaroscopy, Best practice & research clinical rheumatology, Vol. 27, No. 2, pp. 237-248DOI
2 
M. Cutolo, 2015, Atlas of capillaroscopy in rheumatic diseasesGoogle Search
3 
M. Komai, D. Takeno, C. Fujii, J. Nakano, Y. Ohsaki, H. Shirakawa, 2024, Nailfold Capillaroscopy: A Comprehensive Review on Its Usefulness in Both Clinical Diagnosis and Improving Unhealthy Dietary Lifestyles, Nutrients, Vol. 16, No. 12, pp. 1914DOI
4 
H. S. Kim, 2015, The Efficacy of Nailfold Capillaroscopy in Patients with Raynaud’s Phenomenon, Journal of Rheumatic Diseases, Vol. 22, No. 2, pp. 69-75DOI
5 
W. H. Choi, H. S. Kim, 2019, A Diagnostic Roadmap for Raynaud’s Phenomenon, The Korean Journal of Medicine, Vol. 94, No. 5, pp. 431-437DOI
6 
V. Smith, 2020, Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud's phenomenon and systemic sclerosis, Autoimmunity reviews, Vol. 19, No. 3, pp. 102458DOI
7 
H. S. Kim, 2016, The Clinical Efficacy of Nailfold Capillaroscopy in Rheumatic Diseases, The Korean Journal of Medicine, Vol. 90, No. 6, pp. 494-500DOI
8 
J. W. Yau, 2012, Global prevalence and major risk factors of diabetic retinopathy, Diabetes care, Vol. 35, No. 3, pp. 556-564DOI
9 
M. Shikama, 2021, Association of crossing capillaries in the finger nailfold with diabetic retinopathy in type 2 diabetes mellitus, Journal of diabetes investigation, Vol. 12, No. 6, pp. 1007-1014DOI
10 
P. G. Bharathi, 2023, A deep learning system for quantitative assessment of microvascular abnormalities in nailfold capillary images, Rheumatology, Vol. 62, No. 6, pp. 2325-2329DOI
11 
S. Y. Bae, O. Lee, 2021, Development of Image Analysis System for Nailfold Capillaries Using Smartphone, The Transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 6, pp. 905-910DOI
12 
M. Etehad Tavakol, A. Fatemi, A. Karbalaie, Z. Emrani, B.-E. Erlandsson, 2015, Nailfold capillaroscopy in rheumatic diseases: which parameters should be evaluated?, BioMed Research International, Vol. 2015, No. 1, pp. 974530DOI
13 
T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, 2017, Focal loss for dense object detection, pp. 2980-2988Google Search
14 
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, 2014, Dropout: a simple way to prevent neural networks from overfitting, The journal of machine learning research, Vol. 15, No. 1, pp. 1929-1958Google Search
15 
O. Ronneberger, P. Fischer, T. Brox, 2015, U-net: Convolutional networks for biomedical image segmentation, pp. 234-241DOI
16 
O. Oktay, 2018, Attention u-net: Learning where to look for the pancreas, arXiv preprint arXiv:1804.03999DOI
17 
V. Badrinarayanan, A. Kendall, R. Cipolla, 2017, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE transactions on pattern analysis and machine intelligence, Vol. 39, No. 12, pp. 2481-2495DOI
18 
H. Huang, 2020, Unet 3+: A full-scale connected unet for medical image segmentation, pp. 1055-1059DOI
19 
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, 2018, Encoder-decoder with atrous separable convolution for semantic image segmentation, pp. 801-818Google Search
20 
D. Jha, 2019, Resunet++: An advanced architecture for medical image segmentation, pp. 225-230DOI
21 
R. Azad, 2024, Medical Image Segmentation Review: The Success of U-Net, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 46, No. 12, pp. 10076-10095DOI
22 
J. Bertels, 2019, Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice, pp. 92-100DOI
23 
K. Choi, 2016, Real-time artificial neural network for high-dimensional medical image, Journal of the Korean Society of Radiology, Vol. 10, No. 8, pp. 637-643Google Search
24 
Y. Deng, 2019, Deep learning on mobile devices: a review, Mobile Multimedia/Image Processing, Security, and Applications 2019, Vol. 10993, pp. 52-66DOI
25 
T. Zhao, 2022, A survey of deep learning on mobile devices: Applications, optimizations, challenges, and research opportunities, Proceedings of the IEEE, Vol. 110, No. 3, pp. 334-354DOI
26 
P. Hu, 2020, Real-time semantic segmentation with fast attention, IEEE Robotics and Automation Letters, Vol. 6, No. 1, pp. 263-270DOI