Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers

References

1 
K. B. Kim, B. H. Lee, P. M. Park, 2016, Technology Trends on the Electric Propulsion System for Aircraft, Current industrial and technological trends in aerospace, Vol. 14, No. 1, pp. 70-82Google Search
2 
Del Rosario Ruben, Sept 2014, A Future with Hybrid Electric Propulsion Systems: A NASA Perspective, Turbine Engine Technology SymposiumGoogle Search
3 
Clarke Sean, June 2015, Aircraft Electric Propulsion Systems: Applied Research at NASA, 2015 IEEE Transportation Electri- fication Conference and ExpoGoogle Search
4 
J. H. Kim, Dec 2013, 3D Electromagnetic Design and Power Characteristic Analysis of 10MW class HTS synchronous generator for 10MW class wind turbine application, Master thesisGoogle Search
5 
K. S. Haran, T. O. Deppen, L. Zheng, Mar 2016, Actively Shielded High-Field Air-Core Superconducting Machines, IEEE Trans. Appl. Supercond, Vol. 26, No. 2 Art. no. 5202508DOI
6 
J. Zamboni, 2018, A Method for the conceptual design of hybrid electric air-craft, PhD thesis, Delft University of Technology, NetherlandsDOI
7 
F. Gaspari, L. Trainelli, A. Ronaldo, I. Perkon, Nov 2017, D1.1: Concept of Modular Architecture for Hybrid Electric Propulsion of Aircraft, MAHEPAGoogle Search
8 
K. Petermaier, Sept 2015, Electric propulsion components with high power densities for aviation, Transformative Vertical Flight WorkshopGoogle Search
9 
P. J. Masson, G. V. Brown, D. S. Soban, C. A. Luongo, 2007, HTS machines as enabling technology for all- electric airborne vehicles, Supercond. Sci. Technol., Vol. 20, No. 8, pp. 748-756Google Search
10 
F. Gaspari, L. Trainelli, A. Ronaldo, I. Perkon, Nov 2017, D1.1: Concept of Modular Architecture for Hybrid Electric Propulsion of Aircraft, MAHEPAGoogle Search
11 
N. Rossi, 2017, Conceptual Design of Hybrid-Electric Aircraft, Master thesis, Politecnico Di Milano, ItalyGoogle Search
12 
H. Y. Hwang, T. W. Nam, July 2012, Aircraft Sizing Methods for the Design of an Electrically Propelled Aircraft, Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 40, No. 7DOI
13 
K. S. Shin, H. Y. Hwang, J. Ahn, T. W. Nam, 2012, Preliminary Sizing of a High Temperature Superconducting Motor for the Application to Electrically Propelled Aircraft, Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 40, No. 8, pp. 789-799DOI
14 
H. S. Han, Shin, K. S. Shin, H. J. Park, H. Y. Hwang, T. W. Nam, 2013, Initial Sizing of General Aviation Aircraft Propelled by Electric Propulsion system, Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 41, No. 5, pp. 391-403DOI
15 
H. J. Sung, M. W. Park, I. K. Yu, Mar 2015, Design of 10MW Air-Core and Iron-Core HTS Wind Power Generators, Journal of Electrical Engineering & Technology, Vol. 10, No. 2, pp. 545-550DOI
16 
ICNIRP, 1994, Guideline to limits of exposure to static magnetic fields, Health Phys., Vol. 66, pp. 113-122Google Search
17 
S. MISHRA, 2017, Design and Analysis of A Novel High Temperature Superconducting Synchronous Machines, PhD thesis, Florida State University, U.S.Google Search
18 
H. W. Cho, K. S. Haran, Sep. 2018, Force Analysis of Super- conducting Coils in Actively Shielded Air-Core Superconducting Machines, IEEE Trans. Appl. Supercond, Vol. 28, No. 5 Art. no. 5206808.DOI
19 
Y. Terao, M. Sekino, H. Ohsaki, Jun. 2012, Electromagnetic Design of 10MW Class Fully Superconducting Wind Turbine Generators, IEEE Trans. Appl. Supercond., Vol. 22, No. 3, Art no 5201904DOI
20 
R. Shafaie, M. Kalantar, Sep. 2013, Design of a 10-MW-Class Wind Turbine HTS Synchronous Generator With Optimized Field Winding, IEEE Trans. Appl. Supercond, Vol. 23, No. 4, Art. no. 5202307DOI
21 
H. J. Sung, R. A. Badcock, Z. Jiang, J. Choi, M. W. Park, I. K. Yu, Jun 2016, Design and Heat Load Analysis of a 12MW HTS Wind Power Generator Module Employing a Brushless HTS Exciter, IEEE Trans. Appl. Supercond., Vol. 26, No. 4, Art. no. 5205404DOI
22 
H. W. Neumuller, W. Nick, B. Wacker, M. Frank, G. Nerowski, J. Frauenhofer, W. Rzadkl, R. Hartig, 2007, Advances in and prospects for development of high-temperature superconductor rotating machines at Siemens, Supercond. Sci. Technol., Vol. 19, No. 3, pp. 114-117Google Search
23 
G. V. Brown, Jan 2011, Weights and Efficiencies of Electric Components of a Turboelectric Aircraft propulsion system, in Proc. of 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace ExpositionDOI
24 
C. A. Luongo, P. J. Masson, T. W. Nam, D. Mavris, H. D. Kim, G. V. Brown, M. Waters, D. Hall, Jun 2009, Next Generation More-Electric Aircraft A Potential Application for HTS Superconductors, IEEE Trans. Appl. Supercond., Vol. 19, No. 3, pp. 1055-1068DOI
25 
Y. Guan, Z. Q. Zhu, G. J. Li, Z. Azar, A. S. Thomas, F. V. Santos, M. Odavic, Sep. 2017, 5204009., Influence of Pole Number and Stator Outer Diameter on Volume, Weight, and Cost of Superconducting Generators With Iron-Cored Rotor Topology for Wind Turbines, IEEE Trans. Appl. Supercond., Vol. 27, No. 6DOI
26 
S. Kalsi, June 2001, A Small-size Superconducting Generator Concept, in Proc. of Intemational Machines and Drives ConferenceDOI
27 
M. Saruwatari, K. Yun, M. Iwakuma, K. Tamura, Y. Hase, Y. Sasamori, T. Izumi, JUNE 2016, 5206805, Wind Fully Design study 15-MW fully superconducting generators for offshore wind turbine, IEEE Trans. Appl. Supercond., Vol. 26, No. 4DOI
28 
R. Qiu, Y. Liu, J. Wang, June 2013, 5201108., Review of Superconducting Generator Topologies for Direct-Drive Wind Turbines, IEEE Trans. Appl. Supercond., Vol. 23, No. 3DOI
29 
M. R. Quddes, M. Sekino, H. Ohsaki, N. Kashima, S. Nagaya, Jun 2009, Electromagnetic Design Study of Transverse Flux Enhanced Type Superconducting Wind Turbine Generators, IEEE Trans. Appl. Supercond., Vol. 21, No. 3, pp. 1101-1104DOI
30 
R. Shafaie, M. Kalantar, aug. 2013, 5202307, Design of a 10-MW-Class Wind Turbine HTS Synchronous Generator With Optimized Field Winding, IEEE Trans. Appl. Supercond., Vol. 23, No. 4DOI
31 
G. H. Kim, N. Kim, K. M. Kim, M. Park, I. K. Yu, S. Lee, T. J. Park, aug. 2012, 5202105, EMTDC Based Simulation of 10 MW Class Grid-Connected Superconducting Wind Turbine Generator, IEEE Trans. Appl. Supercond., Vol. 22, No. 43DOI
32 
J. Wang, R. Qu, and Y. Liu, June 2013 5201005, Comparison Study of Superconducting Generators With Multiphase Armature Windings for Large-Scale Direct-Drive Wind Turbines, IEEE Trans. Appl. Supercond., Vol. 23, No. 3DOI