Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers


J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-Pison, F. Antonanzas-Torres, 2016, Review of Photovolt Power Forecast, Sol. Energy, Vol. 136, pp. 78-111DOI
E. Lorenz, J. Remund, S. C. Müller, W. Traunmüller, G. Steinmaurer, D. Pozo, J. A. Ruiz-Arias, V. L. Fanego, L. Ramirez, M. G. Romeo, September 2009, Benchmarking of Different Approaches to Forecast Solar Irradiance, others. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, pp. 21-25Google Search
Bella Espinar, Jos´e-Luis Aznarte, Robin Girard, Alfred Mbairadjim Moussa, Georges Karinio-takis, Apr 2010, Photovoltaic Forecasting: A state of the art, 5th European PV-Hybrid and Mini-GridConference, pp. 250-255Google Search
A. Moreno-Munoz, J. J. G. De la Rosa, R. Posadillo, F. Bellido , 11-16 May 2008, Very short term forecasting of solar radiation, In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference 2008 PVSC 08, San Diego, CA , USADOI
Maïmouna Diagne Hadja, Lauret Philippe, May 2012, Solar irradiation forecasting: state-ofthe-art and proposition for future developments for small-scale insular grids, WREF 2012 - World Renewable Energy ForumGoogle Search
D. Heinemann, E. Lorenz, B. Lückehe, 1999, Short-term fore- casting of solar radiation: A statistical approach using satellite data, Sol. Energy, Vol. 67, pp. 139-150DOI
S. Kalogirou, 2001, Artificial neural networks in renewable energy systems applications: A review, Renew. Sustain. Energy Rev, Vol. 5, pp. 373-401DOI
T. C. Hugo, P. Carlos, F. M. Coimbra, July 2012, Assessment of Forecasting Techniques for Solar Power Production with no Exogenous Inputs, Solar Energy, Vol. 86, No. 7, pp. 2017-2028DOI
G. Joao, F. da Silva , O. Jr. Takashi , T. Takumi, K. Gentarou, U. Yoshihisa, O. Kazuhiko, July 2011, Use of Support Vector Regression and Numerically Predicted Cloudiness to Forecast Power Output of a Photovoltaic Power Plant in Kitakyushu, JapanDOI
L. I. Guangye, 2017, Short-term electricity load forecasting based on the xgboost algorithm, Smart Grid, Vol. 7, pp. 274-285DOI
P. Li, J. -S. Zhang, 2018, A new hybrid method for China’s energy supply security forecasting based on arima and xgboost, Energies, Vol. 11, pp. 1687DOI
Y. Xiao, J. Wu, Z. Lin, X. Zhao, 2018, A deep learning- based multi-model ensemble method for cancer prediction, Comput. Methods Programs Biomed, Vol. 153, pp. 1-9DOI
J. Xiao, Y. Li, L. Xie, D. Liu, J. Huang, 2018, A hybrid model based on selective ensemble for energy consumption forecasting in China, Energy, Vol. 159, pp. 534-546DOI
M. C. Torre, P. Poggi, A. Louche, 2001, Markovian model for studying wind speed time series in corsica, Int. J. Renew. Energy Eng, Vol. 3, pp. 311-319Google Search
JR QUINLAN, 1986, Induction of decision trees - Machine Learning (Theory)Google Search
L. Breiman, 1996, Bagging predictors, Mach. Learn, Vol. 24, pp. 123-140Google Search
Chen Tianqi, Guestrin Carlos, 10 Jun 2016, XGBoost: A Scalable Tree Boosting SystemDOI
H. Zhou, Z. Deng, Y. Xia, M. Fu, 2016, A new sampling method in particle filter based on pearson correlation coefficient, Neurocomputing, Vol. 216, pp. 208-215DOI