Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers

References

1 
F. H. Kruger, February 1991, Industrial High Voltage, Delft University Press, pp. 133-145Google Search
2 
E. Gulski, A. Krivda, 1993, Neural networks as a tool for recognition of partial discharges, IEEE Transactions on Electrical Insulation, Vol. 28, No. 6, pp. 984-1001DOI
3 
M. Quizhpi-Cuesta, F. Gómez-Juca, W. Orozco-Tupacyupanqui, F. Quizhpi-Palomeque, January 2018, Classification of Partial Discharge in Pin Type Insulators Using Fingerprints and Neural Networks, in IEEE International Autumn Meeting on PowerDOI
4 
N. C. Sahoo, M. M. A. Salama, May 2005, Trends in partial discharge pattern classification : a survey, Transactions on Dielectrics and Electrical Insulation, Vol. 12, No. 2, pp. 248-264DOI
5 
X. Peng, F. Yang, G. Wang, Y. Wu, L. Li, Z. Li, A. A. Bhatti, C. Zhou, D. M. Hepburn, A. J. Reid, M. D. Judd, W. H. Siew, August 2019, A Convolutional Neural Network-Based Deep Learning Methodology for Recognition of Partial Discharge Patterns from High-Voltage Cables, IEEE Transactions on Power Delivery, Vol. 34, No. 4, pp. 1460-1469DOI
6 
N. Hozumi, H. Michiue, H. Nagae, Y. Muramoto, 2000, Time-lag Measurement of Void Discharges for the Clarification ot the Factor for Partial Discharge Pattern, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 717-720DOI
7 
KEPCO General Purchasing Standards, 2018, Underground transmission line On-line partial discharge diagnosis, GS-6110-0263Google Search
8 
T. R. Sukma, U. Khayam, Suwarno, R. Sugawara, H. Yoshikawa, M. Kozako, M. Hikita, O. Eda, M. Otsuka, H. Kaneko, Y. Shiina, September 2018, Classification of Partial Discharge Sources using Waveform Parameters and Phase-Resolved Partial Discharge Pattern as Input for the Artificial Neural Network, Condition Monitoring and Diagnosis (CMD)DOI
9 
D. E. Kim, M. Gofman, January 2018, Comparison of Shallow and Deep Neural Networks for Network Intrusion Detection, IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 204-208DOI
10 
J. Jineeth, R. Mallepally, T. K. Sindhu, June 2018, Classification Of Partial Discharge Sources In XLPE Cables By Artificial Neural Networks And Support Vector Machine, Electrical Insulation Conference (EIC), pp. 407-411DOI
11 
Z. Qian, C. Zhou, J. Cheng, Q. Wang, October 2016, Identification of conductive leakage signal in power cable based on Multi-Classification PSO-SVM, in IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing)DOI