Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers

References

1 
H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. Yuen, Y. Hua, S. Gueroussov, H. S. Naja- fabadi, T. R. Hughes, Q. Morris, Y. Barash, A. R. Krainer, N. Jojic, S. W. Scherer, B. J. Blencowe, B. J. Frey, January 2015, RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease, Science, Vol. 346, No. 6218, pp. 1-20DOI
2 
27.09.2019, https://www.ncc.re.kr/Google Search
3 
B. H. Chi, I. H. Chang, 2018, The Overdiagnosis of Kidney Cancer in Koreans and the Active Surveillance on Small Renal Mass, Korean J Urol Oncol, Vol. 16, No. 1, pp. 15-24DOI
4 
A. M. Ali, H. Zhuang, A. Ibrahim, O. Rehman, M. Huang, A. Wu, Nov 2018, A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data, Appl Sci, Vol. 8, No. 2422, pp. 1-14DOI
5 
B. E. Bejnordi, M. Veta, P. J. van Diest, B. van Ginneken, N. Karssemeijer, G. Litjens, J. Laak, M. Hermsen, Q. Manson, M. Balkenhol, O. Geessink, N. Stathonikos, M. Dijk, P. Bult, F. Beca, A. H. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H. Lin, P. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka, H. Matsuda, H. A. Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno, M. Milagro Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu, December 2017, Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer, JAMA, Vol. 318, No. 22, pp. 2199-2210DOI
6 
P. Ferroni, F. M. Zanzotto, S. Riondino, N. Scarpato, F. Guadagni, M. Roselli, March 2019, Breast cancer prognosis using a machine learning approach, Cancers, Vol. 11, No. 3, pp. 328DOI
7 
K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, D. I. Fotiadis, November 2014, Machine learning applications in cancer prognosis and prediction, Comput Struct Biotechnol J, Vol. 15, No. 13, pp. 8-17DOI
8 
P. Mobadersany, S. Yousefi, M. Amgad, D. A. Gutman, J. S. Barnholtz-Sloan, J. E. Vega, D. J. Brat, L. Cooper, 2018, Predicting cancer outcomes from histology and genomics using convolutional networks, PANS, Vol. 115, No. 13, pp. e2970-E2979DOI
9 
B. J. Kim, S. H. Kim, January 2018, Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method, Proc Natl Acad Sci USA, Vol. 115, No. 6, pp. 1322-1327DOI
10 
O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, D. Botstein, July 2003, A Bayesian framework for combining heterogeneous data sources for gene function prediction (in S. cerevisiae), Proc Natl Acad Sci USA, Vol. 100, No. 14, pp. 8348-8353DOI
11 
M. Amgad, H. Elfandy, H. Hussein, L. A. Atteya, M. A. T. Elsebaie, L. S. A. Elnasr, R. A. Sakr, H. S. E. Salem, A. F. Ismail, A. M. Saad, J. Ahmed, M. A. T. Elsebaie, M. Rahman, I. A. Ruhban, N. M. Elgazar, Y. Alagha, M. H. Osman, A. M. Alhusseiny, M. M. Khalaf, A. F. Younes, A. Abdulkarim, D. M. Younes, A. M. Gadallah, A. M. Elkashash, S. Y. Fala, B. M. Zaki, J. Beezley, D. R. Chittajallu, D. Manthey, D. A. Gutman, L. A. D. Cooper, September 2019, Structured crowdsourcing enables convolutional segmentation of histology images, Bioinformatics, Vol. 35, No. 18, pp. 3461-3467DOI
12 
https://portal.gdc.cancer.gov/Google Search
13 
https://scikit-learn.org/Google Search
14 
R. Tibshirani, 1996, Regression shrinkage and selection via the lasso, J Royal Stat Soc, Vol. 58, No. 1, pp. 267-288DOI
15 
R. Tibshirani, June 2012, The lasso problem and uniqueness, Electronic Journal of Statistics, Vol. 7, pp. 1456-1490Google Search
16 
L. Wasserman, K. Roeder, 2009, High Dimensional Variable Selection, The Annals of Statistics, Vol. 37, No. 5a, pp. 2178-2201Google Search
17 
C. Y. Park, May 2013, Simple principal component analysis using Lasso, Journal of the Korean Data and Information Science Society, Vol. 24, pp. 533-541DOI
18 
T. Hristo, F. David, G. Susanne, January 2018, Principal Components Analysis: Theory and Application to Gene Expression Data Analysis, Genomics and Computational biology, Vol. 4, No. 2, pp. 1-7DOI
19 
M. Chen, A. Z. Oana, G. T. Gerhard, K. Bernhard, M. G. Amin, C. C. Aedín, July 2016, Dimension reduction techniques for the integrative analysis of multi-omics data, Brief Bioinformatics, Vol. 17, No. 4, pp. 628-641DOI
20 
E. Cappelli, G. Felici, E. Weitschek, October 2018, Combining DNA methylation and RNA sequencing data of cancer for supervised knowledge extraction, BioData Mining, Vol. 11, No. 22, pp. 1-23DOI
21 
J. Han, M. Kamber, J. Pei, 2013, Data Mining: Concepts and Techniques(3rd ed.), Morgan KaufmannGoogle Search