Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers


Koida, Takashi, Ueno Yuko, Shibata Hajime, Feb 2018, In2O3‐based transparent conducting oxide films with high electron mobility fabricated at low process temperatures, physica status solidi (a) 215.7, Vol. 1700506DOI
Z. Wang., C. Chen., K. Wu., H. Chong., H. Ye., Feb 2019, Transparent conductive oxides and their applications in near infrared Plasmonics, physica status solidi (a) 216.5, Vol. 1700794DOI
B. H. Kim., C. M. Staller., S. H. Cho., S. Heo., C. E. Garrison., J. Kim., D. J. Milliron., Mar 2018, High mobility in nanocrystal-based transparent conducting oxide thin films, ACS nano, Vol. 12, No. 4, pp. 3200-3208DOI
Li Sen, Shi Zhifeng, Tang Zhaojun, Li Xinjian, Nov 2017, Com- parison of ITO, In2O3: Zn and In2O3: H transparent conductive oxides as front electrodes for silicon heterojunc- tion solar cell applications, Vacuum 145, pp. 262-267DOI
W. Yoon, D. Scheiman, Y. W. Ok, Z. Song, C. Chen, G. Jernigan, P. Jenkins, Jun 2020, Sputtered indium tin oxide as a recombination layer formed on the tunnel oxide/ poly-Si passivating contact enabling the potential of efficient monolithic perovskite/Si tandem solar cells, Solar Energy Materials and Solar Cells 210, Vol. 110482DOI
M. L. Addonizio, E. Gambale, Aug 2020, Micro- structure evolution of room-temperature-sputtered ITO films suitable for silicon heterojunction solar cells, Current Applied Physics 20.8, pp. 953-960DOI
Parida, Bhaskar, Youngun Gil, Mar 2019, Highly transparent conducting indium tin oxide thin films prepared by radio frequency magnetron sputtering and thermal annealing, Journal of nanoscience and nanotechnology 19.3, pp. 1455-1462DOI
M. G. Sousa, A. F. Da Cunha, Aug 2019, Optimization of low temperature RF-magnetron sputtering of indium tin oxide films for solar cell applications, Applied Surface Science 484, pp. 257-264DOI
Ţălu, Ştefan, Ilya A. Morozov, Pratap Yadav. Ram, Aug 2019, Multifractal analysis of sputtered indium tin oxide thin film surfaces, Applied Surface Science 484, pp. 892-898DOI
B. Dou, E.M. Miller, J.A. Christians, E.M. Sanehira, T.R. Klein, Barnes, Sep 2017, High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO, The journal of physical chemistry letters 8.19, pp. 4960-4966DOI
A.D. Khan, F.E. Subhan, A.D. Khan, S.D. Khan, Ahmad, Rehan, M. Noman, Apr 2020, Optimization of efficient monolithic perovskite/silicon tandem solar cell, Optik 208, pp. 164573DOI
R. Mohammadigharehbagh, S. Pat, S. Özen, H. H. Yudar, Ş Korkmaz, Mar 2018, Investigation of the optical pro- perties of the indium-doped ZnO thin films deposited by a thermionic vacuum arc, Optik 157, pp. 667-674DOI
A. K. Gangwar, R. Godiwal, J. Jaiswal, V. Baloria, P. Pal, G. Gupta, P. & Singh, Jul 2020, Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process, Vacuum 177, Vol. 109353DOI
S. Ullah, R. Branquinho, A. Santa, Matteis F. De, R. Martins, I. Davoli, E. Fortunato, Sep 2018, Boosting highly trans- parent and conducting indium zinc oxide thin films through solution combustion synthesis: influence of rapid thermal annealing, Semiconductor Science and Technology 33.10, Vol. 105004Google Search
S. Sharma, S. Shriwastava, S. Kumar, K. Bhatt, C. C. Tripathi, Sep 2018, Alternative transparent conducting electrode materials for flexible optoelectronic devices, Opto-Electronics Review 26.3, pp. 223-235DOI
G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, W. J. Wang, Mar 2017, Transparent conductive Hf-doped In2O3 thin films by RF sputtering technique at low temperature annealing, Applied Surface Science 399, pp. 716-720DOI
F. Meng, J. Shi, L. Shen, L. Zhang, J. Liu, Y. Liu, Z. Liu, Mar 2017, Characterization of transparent conductive oxide films and their effect on amorphous/crystalline silicon heterojunction solar cells, Japanese Journal of Applied Physics 56.4S, Vol. 04CS09Google Search
F. Meng, J. Liu, L. Shen, J. Shi, A. Han, L. Zhang, Z. Liu, Nov 2017, High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells, Frontiers in Energy 11.1, pp. 78-84DOI
A. Cruz, E. C. Wang, A. B. Morales-Vilches, D. Meza, S. Neubert, B. Szyszka, B Stannowski, Jun 2019, Effect of front TCO on the performance of rear-junction silicon heterojunction solar cells: Insights from simulations and experiments, Solar Energy Materials and Solar Cells 195, pp. 339-345DOI
F. Wang, S. Zhao, B. Liu, Y. Li, Q. Ren, R. Du, X. Zhang, Sep 2017, Silicon solar cells with bifacial metal oxides carrier selective layers, Nano Energy 39, pp. 437-443DOI
A. D. Khan, F. E. Subhan, A. D. Khan, S. D. Khan, M. S. Ahmad, M. S. Rehan, M. Noman, Apr 2020, Optimi- zation of efficient monolithic perovskite/silicon tandem solar cell, Optik 208, Vol. 1645573DOI
S. Edinger, N. Bansal, M. Bauch, R. A. Wibowo, G. Újvári, R. Hamid, T. Dimopoulos, Apr 2017, Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions, Journal of Materials Science 52.14, pp. 8591-8602DOI
Morales-Masis Monica, De Wolf Stefaan, Woods- Robinson Rachel, W. Ager and Christophe Ballif Joel, Mar 2017, Transparent electrodes for efficient optoelectronics, Advanced Elec- tronic Materials 3.5, Vol. 1600529DOI
A. Cruz, D. Erfurt, R. Köhler, M. Dimer, E. Schneiderlöchner, B. Stannowski, 2020, Industrial TCOs for SHJ solar cells: Approaches for optimizing performance and cost, Photovoltaics International, 44th ed.; Solar Media Limited: London, Vol. uk, pp. 86Google Search
S. Li, Z. Shi, Z. Tang, X. Li, Nov 2017, Comparison of ITO, In2O3: Zn and In2O3: H transparent conductive oxides as front electrodes for silicon heterojunction solar cell appli- cations, Vacuum 145, pp. 262-267DOI
E. Raoult, R. Bodeux, S. Jutteau, S. Rives, A. Yaiche, D. Coutancier, S. Collin, Mar 2020, Optical analysis and optimizations of semi-transparent triple cation perovskite solar cells for tandem applications, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices IX, Vol. 11275, No. International Society for Optics and PhotonicsDOI
H. Shen, D. Walter, Y. Wu, K. C. Fong, D. A. Jacobs, T. Duong, K. R. Catchpole, Dec 2020, Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency, Advanced Energy Materials 10.13, Vol. 19902840DOI
F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, C. Ballif, Jun 2018, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nature materials 17.9, pp. 820-826DOI
C. U. Kim, J. C. Yu, E. D. Jung, I. Y. Choi, W. Park, H. Lee, K. J. Choi, Jun 2019, Optimization of device design for low cost and high efficiency planar monolithic per- ovskite/silicon tandem solar cells, Nano Energy 60, pp. 213-221DOI
H. Shen, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, K. Catchpole, Jan 2018, Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity, Energy & Environmental Science 11.2, pp. 394-406DOI
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, H. Tan, Sep 2019, Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (ii) oxidation in precursor ink, Nature Energy 4.10 (2019): 864-873, Vol. , No. , pp. -DOI
Joseph Hua-Hsien. Liao, Feb 2021, Behind the Breakthrough of the ~30% Perovskite Solar Cell, Joule 5.2, pp. 295-297DOI