• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M. Mozetic, A. Vesel, G. Primc, 2018, Recent developments in surface science and engineering, thin films, nanoscience, biomaterials, plasma science, and vacuum technology, Thin Solid Films, Vol. 660, pp. 120-160DOI
2 
Z. Yanhui, Z. Shengsheng, R. Ling, 2018, Effect of Substrate Pulse Bias Voltage on the Microstructure and Mechanical and Wear- resistant Properties of TiN/Cu Nanocomposite Films, Rare Metal Materials and Engineering, Vol. 47, pp. 3284-3288DOI
3 
H.G. Prengel, A.T. Santhanam, R.M. Penich, 1997, Advanced PVD- TiAlN coatings on carbide and cermet cutting tools, Surf. & Coat. Tech., Vol. 94-95, pp. 597-602DOI
4 
L.A. Donahue, J. Cawley, J.S. Brooks, 1995, Deposition and characterisation of arc-bond sputter TixZryN coatings from pure metallic and segmented targets, Surf. & Coat. Tech., Vol. 72, pp. 128-138DOI
5 
H.A. Jehn, F. Thiergarten, H. Ebersbacb, 1994, Characterization of PVD (Ti, Cr)Nx hard coatings, Surf. & Coat. Tech., Vol. 50, pp. 45-52DOI
6 
S.Y. Yoon, K.O. Lee, S.S. Kang, 2002, Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique, Journal of Materials Processing Technology, Vol. 130-131, pp. 260-265DOI
7 
H.C. Barshilia, M.S. Prakash, A. Jain, 2005, Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films, Vacuum, Vol. 77, pp. 169-179DOI
8 
M. Kawate, A.K. Hashimoto, T. Suzuki, 2003, Oxidation resistance of Cr1-XAlXN and Ti1-XAlXN films, Surf. & Coat. Tech., Vol. 165, pp. 163-167DOI
9 
G.E. Lane, J.C. Andersen, 1975, The nucleation and initial growth of gold films deposited onto sodium chloride by ion-beam sputtering, Thin Solid Films, Vol. 26, No. 1, pp. 5-23DOI
10 
A. Kimura, T. Murakami, K. Yama, February 2001, Hot-pressed Ti-Al targets for synthesizing Ti1-xAlxN films by the arc ion plating method, Thin Solid Films, Vol. 382, pp. 101-105DOI
11 
H.C. Barshilia, K.S. Rajam, A. Jain, 2006, A comparative study on the structure and properties of nanolayered TiN/NbN and TiAlN/TiN multilayer coatings prepared by reactive direct current magnetron sputtering, Thin Solid Films, Vol. 503, pp. 158-166DOI
12 
F. Hollstein, R. Wiedemann, J. Scholz, 2003, Characteristics of PVD- coatings on AZ31hp magnesium alloys, Surf. & Coat. Tech., Vol. 162, pp. 261-268DOI
13 
Y.Y. Chang, D.Y. Wang, C.Y. Hung, 2005, Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process, Surf. & Coat. Tech., Vol. 200, pp. 1702-1708DOI
14 
D.B. Lewis, I. Wadsworth, W.D. Munz, 1999, Structure and stress of TiAlN/CrN superlattice coatings as a function of CrN layer thickness, Surf. & Coat. Tech., Vol. 116-119, pp. 284-291DOI
15 
M.S. Shiao, F.S. Shieu, 2001, A formation mechanism for the macroparticles in arc ion-plated TiN films, Thin Solid Film, Vol. 386, No. 1, pp. 27-31DOI
16 
S.Y. Yoon, Y.B. Lee, December 2002, Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique, Journal of Materials Processing Technology, Vol. 130-131, pp. 260-265DOI
17 
A.E. Reiter, V.H. Derflinger, B. Hanselmann, 2005, Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation, Surf. & Coat. Tech., Vol. 200, pp. 2114-2122DOI
18 
H. Hasegawa, T. Suzuki, 2004, Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method, Surf. & Coat. Tech., Vol. 188-189, pp. 234-240DOI
19 
D.A. Colombo, A.D. Mandri, M.D. Echeverria, February 2018, Mechanical and tribological behavior of Ti/TiN and TiAl/TiAlN coated austempered ductile iron, Thin Solid Films, Vol. 647, pp. 19-25DOI
20 
J. Sekler, P.A. Steinmann, H.E. Hintermann, 1988, The scratch test: Different critical load determination techniques, Surf. & Coat. Tech., Vol. 36, pp. 519-529DOI