Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers

References

1 
P. V. Kokotovic, H. K. Khalil, J. O’Reilly, 1999, Singular Perturbation Methods in Control: Analysis and Design, Philadelphia Pennsylvania USA: Society for Industrial & Applied MathematicsGoogle Search
2 
H. K. Khalil, 2002, Nonlinear Systems, 3rd ed Prentice-Hall: Upper Saddle River NJ USAGoogle Search
3 
G. F. Franklin, J. D. Powell, A. Emami-Naeini, 2005, Feedback Control of Dynamic Systems, 5th ed. Prentice-Hall: Upper Saddle River NJ USAGoogle Search
4 
S. Skogestad, I. Postlethwaite, 2005, Multivariable Feedback Control: Analysis and Design, John Wiley & Sons Inc.: New York NY USAGoogle Search
5 
S. Saha, S. M. Amrr, M. U. Nabi, A. A. Iqbal, 2019, Reduced-order modeling and sliding mode control of active magnetic bearing, IEEE Access, No. 7, pp. 113324-113334DOI
6 
C. Li, Z. Du, Y. Ni, G. Zhang, 2016, Reduced model-based coordinated design of decentralized power system controllers, IEEE Trans. Power Syst, Vol. 31, pp. 2172-2181DOI
7 
S. Li, J. Yang, W. H. Chen, X. Chen, 2014, Disturbance Observer-Based Control: Methods and Applications, CRC Press: Boca Raton FL USAGoogle Search
8 
E. Sariyildiz, R. Oboe, K. Ohnishi, 2020, Disturbance Observer- Based Robust Control and Its Applications: 35th Anniversary Overview, IEEE Trans. Ind. Electron., Vol. 67, No. 3, pp. 2042-2053DOI
9 
H. Shim, G. Park, Y. Joo, J. Back, N.H. Jo, 2016, Yet another tutorial of disturbance observer : robust stabilization and recovery of nominal performance, Control Theory Tech., Vol. 14, No. 3, pp. 237-249DOI
10 
J. Back, H. Shim, 2008, Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: A nonlinear version of disturbance observer, Automatica, Vol. 44, pp. 2528-2537DOI
11 
H. Shim, N. H. Jo, 2009, An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer, Automatica, Vol. 45, No. 1, pp. 296-299DOI
12 
Y. I. Son, I. H. Kim, May 2010, A robust state observer using multiple integrators for multivariable LTI systems, IEICE Trans. Fundamentals, Vol. E93-A, No. 5, pp. 981-984DOI
13 
J. Yao, Z. Jiao, D. Ma, 2014, Adaptive Robust Control of DC Motors With Extended State Observer, IEEE Trans. Ind, Electron., Vol. 61, No. 7, pp. 3630-3636DOI
14 
Y. I. Son, I. H. Kim, D. S. Choi, H. Shim, 2015, Robust cascade control of electric motor drives using dual reduced-order PI observer, IEEE Trans. Ind. Electron, Vol. 62, pp. 3672-3682DOI
15 
C. W. Lee, I. H. Kim, Y. I. Son, 2015, Design of a speed controller for vertical one-link manipulator using internal model-based disturbance observer, Trans. of KIEE, Vol. 64, No. 5, pp. 751-754DOI
16 
I. H. Kim, Y. I. Son, 2017, Regulation of a DC/DC boost converter under parametric uncertainty and input voltage variation using nested reduced-order PI observers, IEEE Trans. Ind. Electron., Vol. 64, No. 1, pp. 552-562DOI
17 
N. D. Amare, Y. I. Son, S. Lim, 2020, Dual PIO-based controller design for robustness improvement of a magnetic levitation system, JEET, Vol. 15, pp. 1389-1398DOI
18 
N. H. Jo, Y. Joo, H. Shim, 2014, A study of disturbance observers with unknown relative degree of the plant, Automatica, Vol. 50, pp. 1730-1734DOI
19 
N. D. Amare, D. H. Kim, S. J. Yang, Y. I. Son, 2021, Boundary conditions for transient and robust performance of a reduced-order model-based state feedback controller with PI observer, Energies, Vol. 14, No. 10, pp. 2881DOI
20 
S. K. Sul, 2016, Control of Electric Machine Drive Systems, Seoul: HONGREUNG SCIENCE PUBLISHERGoogle Search