Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers


G. He, R. Ciez, P. Moutis, S. Kar, J.F. Whitacre, 2020, The economic end of life of electrochemical energy storage, Appl. Energy. 273DOI
X. Wu, J. Jiang, C. Wang, J. Liu, Y. Pu, A. Ragauskas, S. Li, B. Yang, 2020, Lignin-derived electrochemical energy materials and systems, Biofuels, Bioprod. Biorefining 14, pp. 650-672DOI
M. Shi, J. Yuan, L. Dong, D. Zhang, A. Li, J. Zhang, 2020, Combining physicochemical model with the equivalent circuit model for performance prediction and optimization of lead-acid batteries, Electrochim. Acta. 353DOI
A. Calborean, T. Murariu, C. Morari, 2019, Determination of current homogeneity on the electrodes of lead-acid batteries through electrochemical impedance spectroscopy, Electrochim. Acta. 320DOI
Wikipedia contributors, 'Lead–acid battery', Wikipedia, The Free Encyclopedia, 9 July 2020, 16:33 UTC, <https://en.wikipedia. org/w/index.php?title=Lead\%E2\%80\%93acid_battery\&oldid=966859193> [accessed 24 July 2020]Google Search
N. Wei, J. Hu, M. Zhang, J. He, P. Ni, 2019, Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries, Electrochim. Acta. 307, pp. 495-502DOI
X. Song, L. Ding, L. Wang, M. He, X. Han, 2019, Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries, Electrochim. Acta. 295, pp. 1034-1043Google Search
V. Toniazzo, 2005, Amersorb: A new high-performance polymeric separator for lead-acid batteries, in: J. Power Sources, 144, pp. 365-372DOI
V. Toniazzo, 2006, The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries, J. Power Sources. 158, pp. 1124-1132DOI
Source from < gauntlets.php> [accessed 24 July 2020]Google Search
A.L. Ferreira, 2001, Battery additives: Any influence on separator behavior?, J. Power Sources. 95, pp. 255-263DOI
M. Harada, S. Araki, T. Kimura, T. Shibahara, T. Iwasaki, T. Okoshi, S. Terada, M. Terada, 2018, New separator with hydrophilic surface treatment for flooded-type lead-acid battery, J. Energy Storage. 16, pp. 197-202DOI
D. Xu, G. Teng, Y. Heng, Z. Chen, D. Hu, 2020, Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator, Mater. Chem. Phys. 249DOI
D. Klemm, B. Heublein, H.P. Fink, A. Bohn, 2005, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chemie - Int. Ed. 44, pp. 3358-3393DOI
J. Hu, Y. Liu, M. Zhang, J. He, P. Ni, 2020, A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries, Electrochim. Acta. 334Google Search
Hoon Seo, 2019, Study on the effect of hydrophilic treatment on the bio-cellulose based separator for the application of next generation industrial secondary battery, Department of ICT Automotive Engineering, Graduate School Hoseo university, Korea, pp. 7-11Google Search