Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers

References

1 
G. He, R. Ciez, P. Moutis, S. Kar, J.F. Whitacre, 2020, The economic end of life of electrochemical energy storage, Appl. Energy. 273DOI
2 
X. Wu, J. Jiang, C. Wang, J. Liu, Y. Pu, A. Ragauskas, S. Li, B. Yang, 2020, Lignin-derived electrochemical energy materials and systems, Biofuels, Bioprod. Biorefining 14, pp. 650-672DOI
3 
M. Shi, J. Yuan, L. Dong, D. Zhang, A. Li, J. Zhang, 2020, Combining physicochemical model with the equivalent circuit model for performance prediction and optimization of lead-acid batteries, Electrochim. Acta. 353DOI
4 
A. Calborean, T. Murariu, C. Morari, 2019, Determination of current homogeneity on the electrodes of lead-acid batteries through electrochemical impedance spectroscopy, Electrochim. Acta. 320DOI
5 
Wikipedia contributors, 'Lead–acid battery', Wikipedia, The Free Encyclopedia, 9 July 2020, 16:33 UTC, <https://en.wikipedia. org/w/index.php?title=Lead\%E2\%80\%93acid_battery\&oldid=966859193> [accessed 24 July 2020]Google Search
6 
N. Wei, J. Hu, M. Zhang, J. He, P. Ni, 2019, Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries, Electrochim. Acta. 307, pp. 495-502DOI
7 
X. Song, L. Ding, L. Wang, M. He, X. Han, 2019, Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries, Electrochim. Acta. 295, pp. 1034-1043Google Search
8 
V. Toniazzo, 2005, Amersorb: A new high-performance polymeric separator for lead-acid batteries, in: J. Power Sources, 144, pp. 365-372DOI
9 
V. Toniazzo, 2006, The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries, J. Power Sources. 158, pp. 1124-1132DOI
10 
Source from meconder.com <http://www.mecondor.com/en/battery- gauntlets.php> [accessed 24 July 2020]Google Search
11 
A.L. Ferreira, 2001, Battery additives: Any influence on separator behavior?, J. Power Sources. 95, pp. 255-263DOI
12 
M. Harada, S. Araki, T. Kimura, T. Shibahara, T. Iwasaki, T. Okoshi, S. Terada, M. Terada, 2018, New separator with hydrophilic surface treatment for flooded-type lead-acid battery, J. Energy Storage. 16, pp. 197-202DOI
13 
D. Xu, G. Teng, Y. Heng, Z. Chen, D. Hu, 2020, Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator, Mater. Chem. Phys. 249DOI
14 
D. Klemm, B. Heublein, H.P. Fink, A. Bohn, 2005, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chemie - Int. Ed. 44, pp. 3358-3393DOI
15 
J. Hu, Y. Liu, M. Zhang, J. He, P. Ni, 2020, A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries, Electrochim. Acta. 334Google Search
16 
Hoon Seo, 2019, Study on the effect of hydrophilic treatment on the bio-cellulose based separator for the application of next generation industrial secondary battery, Department of ICT Automotive Engineering, Graduate School Hoseo university, Korea, pp. 7-11Google Search