• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
National Institute of Meteorological Sciences, Korea Climate Change Outlook Report 2020, Korea Meteorological Administration, pp. 1–200, 2020.URL
2 
M. Dumas, B. Kc and C. I. Cunliff, Extreme Weather and Climate Vulnerabilities of the Electric Grid: A Summary of Environmental Sensitivity Quantification Methods, Oak Ridge National Laboratory (ORNL), ORNL/TM-2019/1252, pp. 1–60, 2019.URL
3 
W. Na, W. Quan and S. Sheng, “Long-term variation trend of wind and its impact upon wind power generation in Taiwan,” Journal of Electrical Engineering and Technology, vol. 9, no. 3, pp. 782–788, 2014.DOI
4 
V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al., “Climate change 2021: the physical science basis,” Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 2, no. 1, pp. 1–2391, 2021.URL
5 
S. Park, H. Kim, J. Moon, S. Sung and J. Kim, “Development of a spatial grid system for renewable energy and a prediction algorithm for interconnection capacity,” Journal of the Korean Institute of Electrical Engineers, vol. 73, no. 1, pp. 143–151, 2024.URL
6 
Korea Electric Power Corporation, Overhead Transmission Tower Design Standard, DS-1111, KEPCO, pp. 1–150, 2013.URL
7 
M. Ekström, M. R. Grose and P. H. Whetton, “An appraisal of downscaling methods used in climate change research,” Wiley Interdisciplinary Reviews: Climate Change, vol. 6, no. 3, pp. 301–319, 2015.DOI
8 
A. Moreno and H. Hasenauer, “Spatial downscaling of European climate data,” International Journal of Climatology, vol. 36, no. 3, pp. 1445–1456, 2016.URL
9 
R. L. Wilby and T. M. L. Wigley, “Downscaling general circulation model output: a review of methods and limitations,” Progress in Physical Geography, vol. 21, no. 4, pp. 530–548, 1997.DOI
10 
R. E. Benestad, “Empirical‐statistical downscaling in climate modeling,” EOS, Transactions American Geophysical Union, vol. 85, no. 42, pp. 417–422, 2004.URL
11 
D. W. Jang, H. S. Park and J. T. Choi, “Selection of optimal spatial interpolation technique for supplementing precipitation data in areas missing climate change scenario data,” Proceedings of the Korean Water Resources Association Conference, pp. 14–14, 2015.URL
12 
S. W. Park, J. W. Kim and D. S. Song, “Proposal for interpolation method of missing wind speed data in standard meteorological data,” Journal of the Korean Solar Energy Society, vol. 37, no. 6, pp. 79–91, 2017.URL
13 
K. H. Kim, J. H. Yoon and B. S. Kim, “Wind map production using meteorological data in Gangwon-do,” Journal of the Korean Association of Geographic Information Studies, vol. 18, no. 1, pp. 31–39, 2010.URL
14 
J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.URL
15 
Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.DOI
16 
T. Hastie and R. Tibshirani, Generalized Additive Models, Chapman and Hall/CRC, pp. 1–350, 1990.URL
17 
J. H. Friedman, “Multivariate adaptive regression splines,” Annals of Statistics, vol. 19, no. 1, pp. 1–67, 1991.URL
18 
C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.URL
19 
L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.URL