• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. Machowski, J. W. Bialek, J. R. Bumby, 2008, Power System Dynamics: Stability and ControlGoogle Search
2 
F. Diaz-Gonzalez, M. Hau, A. Sumper, O. Gomis-Bellmunt, 2014, Participation of wind power plants in system frequency control: Review of grid code requirements and control methods, Renew. Sust. Energ. Rev., Vol. 34, pp. 551-64DOI
3 
2015, Reliability guideline: Primary frequency controlGoogle Search
4 
J. H. Eto, 2010, Use of frequency response metrics to assess the planning and operating requirements for reliable integration of variable renewable generationGoogle Search
5 
J. Morren, S. W. H. de Haan, W. L. Kling, J. A. Ferreira, 2006, Wind turbines emulating inertia and supporting primary frequency control, IEEE Trans. Power Syst., Vol. 21, No. 1, pp. 433-434DOI
6 
I. D. Margaris, S. A. Papathanassiou, N. D. Hatziargyriou, A. D. Hansen, P. Sørensen, 2012, Frequency control in autonomous power systems with high wind power penetration, IEEE Trans. Sustain. Energy, Vol. 3, No. 2, pp. 189-199DOI
7 
A. Ashouri-Zadeh, M. Toulabi, 2021, Adaptive virtual inertia controller for DFIGs considering nonlinear aerodynamic efficiency, IEEE Trans. Sustain. Energy., Vol. 12, No. 2, pp. 1060-67DOI
8 
W. Bao, L. Ding, Y. C. Kang, L. Sun, 2023, Closed-Loop synthetic inertia control for wind turbine generators in association with slightly over-speeded deloading operation, IEEE Trans. Power Syst., Vol. 38, No. 6, pp. 5022-32DOI
9 
W. Chen, T. Zheng, H. Nian, D. Yang, W. Yang, H. Geng, 2023, Multi-objective adaptive inertia and droop control method of wind turbine generators, IEEE Trans. Ind. App., Vol. 59, No. 6, pp. 7789-99DOI
10 
Y. Tang, P. Yang, Y. Yang, Z. Zhao, L. L. Lai, 2024, Fuzzy Adaptive Frequency Support Control Strategy for Wind Turbines With Improved Rotor Speed Recovery, IEEE Trans. Sustain. Energy., Vol. 15, No. 2, pp. 1351-64DOI
11 
N. R. Ullah, T. Thiringer, D. Karlsson, 2008, Temporary primary frequency control support by variable speed wind turbines—Potential and applications, IEEE Trans. Power Syst., Vol. 23, No. 2, pp. 601-612DOI
12 
P. Keung, P. Li, H. Banakar, B. T. Ooi, 2009, Kinetic energy of wind-turbine generators for system frequency- support, IEEE Trans. Power Syst., Vol. 24, No. 1, pp. 279-87DOI
13 
M. Kheshti, L. Ding, W. Bao, M. Yin, Q. Wu, V. Terzija, 2020, Toward intelligent inertial frequency participation of wind farms for the grid frequency control, IEEE Trans. Ind. Inform., Vol. 16, No. 11, pp. 6772-86DOI
14 
M. Kang, J. Kim, E. Muljadi, J.-W. Park, Y. C. Kang, 2016, Frequency control support of a doubly-fed induction generator based on the torque limit, IEEE Trans. Power Syst., Vol. 31, No. 6, pp. 4575-4583DOI
15 
D. Yang, J. Kim, Y. C. Kang, E. Muljadi, N. Zhang, J. Hong, S.-H. Song, T. Zheng, 2018, Temporary frequency support of a DFIG for high wind power penetration, IEEE Trans. Power Syst., Vol. 33, No. 3, pp. 3428-3437DOI
16 
R. Azizipanah-Abarghooee, M. Malekpour, T. Dragicevic, F. Blaabjerg, V. Terzija, 2020, A linear inertial response emulation for variable speed wind turbines, IEEE Trans. Power Syst., Vol. 35, No. 2, pp. 1198-1208DOI
17 
N. Aubut, J. Brisebois, 2011, Wind farm inertia emulation to fullfil Hydro-Quebec’s specific needDOI
18 
2019, Technical requirement for the connection of generating stations to the Hydro-Quebec transmission systemsGoogle Search
19 
2019, Market manual 2: Market administration−Part 2.20: Performance validationGoogle Search
20 
2019, Technical requirements for fast frequency reserve provision in the Nordic synchronous area−External documentGoogle Search
21 
2021, Technical Requirements for Fast Frequency Reserve Provision in the Nordic Synchronous Area – External documentGoogle Search
22 
2018, Use of wind turbine kinetic energy to supply transmission level servicesGoogle Search