• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Giha Yoon, 2024, Development of Edge Gateway System for Data Acquisition on Transmission Line of AC/DC Hybrid Distribution Network, The transactions of The Korean Institute of Electrical Engineers, Vol. 73, No. 8, pp. 1360-1368DOI
2 
Y. Bicen, 2017, Trend adjusted lifetime monitoring of underground power cable, Electric Power Systems Research, Vol. 143, pp. 189-196DOI
3 
Y. Nie, D. Chen, S. Zheng, X. Xu, X. Wang, Z. Wu, 2024, Simulation and calculation of temperature field and current-carrying capacity of power cables under different laying methods, Energies, Vol. 17, No. 18DOI
4 
E. Gulski, G. J. Anders, R. A. Jongen, J. Parciak, J. Siemiński, E. Piesowicz, S. Paszkiewicz, I. Irska, 2021, Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability, Renewable and Sustainable Energy Reviews, Vol. 151, pp. 111580DOI
5 
S. Bustamante, R. Mínguez, A. Arroyo, M. Manana, A. Laso, P. Castro, R. Martinez, 2019, Thermal behaviour of medium-voltage underground cables under high-load operating conditions, Applied Thermal Engineering, Vol. 156, pp. 444-452DOI
6 
S. Purushothaman, F. de León, M. Terracciano, 2014, Calculation of cable thermal rating considering non-isothermal earth surface, IET Generation, Transmission & Distribution, Vol. 8, No. 7, pp. 1354-1361DOI
7 
A. Sedaghat, F. de León, 2014, Thermal analysis of power cables in free air: Evaluation and improvement of the IEC standard ampacity calculations, IEEE Transactions on Power Delivery, Vol. 29, No. 5, pp. 2306-2314DOI
8 
Y. Li, Y. Liang, Y. Li, W. Si, P. Yuan, J. Li, 2009, Coupled electromagnetic-thermal modeling the temperature distribution of XLPE cable, pp. 1-4DOI
9 
L. Yang, W. Qiu, J. Huang, Y. Hao, M. Fu, S. Hou, L. Li, 2018, Comparison of conductor-temperature calculations based on different radial-position-temperature detections for high-voltage power cable, Energies, Vol. 11, No. 1DOI
10 
P. Möbius, L.-H. Michael, M. Plenz, J. Schräder, D. Schulz, 2025, Energy cable ampacity: Impact of seasonal and climate-related changes, Renewable and Sustainable Energy Reviews, Vol. 212, pp. 115348DOI
11 
S. Tagzirt, D. Bouguedad, A. Mekhaldi, I. Fofana, 2020, Temperature distribution in a 245 kV AC XLPE cable, pp. 483-486DOI
12 
Y. Tian, G. Zhu, Q. Miao, J. Huang, X. Huang, S. Li, L. Li, 2024, Study on the ablation process and failure mechanism of the buffer layer in high-voltage XLPE cable, International Journal of Electrochemical Science, Vol. 19, No. 8, pp. 100662DOI
13 
I. Kocar, A. Ertas, 2004, Thermal analysis for determination of current carrying capacity of PE and XLPE insulated power cables using finite element method, Vol. 3, pp. 905-908DOI
14 
D. Enescu, P. Colella, A. Russo, 2020, Thermal assessment of power cables and impacts on cable current rating: An overview, Energies, Vol. 13, No. 20, pp. 2020DOI
15 
A. Shekhar, X. Feng, R. Hebner, A. Gattozzi, S. Strank, A. Mor, L. Ramírez-Elizondo, P. Bauer, 2017, Thermal modelling and experimental validation for research on medium voltage DC cables, pp. 1-5DOI
16 
Y. J. Han, H. M. Lee, Y.-J. Shin, 2017, Thermal aging estimation with load cycle and thermal transients for XLPE-insulated underground cable, pp. 205-208DOI