KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2026-01
(Vol.75 No.1)
10.5370/KIEE.2026.75.1.223
Journal XML
XML
PDF
INFO
REF
References
1
2024, Large Power Transformers and the U.S. Electric Grid, Infrastructure Security and Energy Restoration Report
2
2023, Condition Assessment of Power Transformers, CIGRE Technical Brochure 761
3
M. Duval, 2002, A review of faults detectable by gas-in-oil analysis in transformers, IEEE Electrical Insulation Magazine, Vol. 18, No. 3, pp. 8-17
4
C. Lin, J. Ling, Z. Huang, 2003, Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers, Expert Systems with Applications, Vol. 24, No. 2, pp. 157-163
5
L. Wang, X. Zhao, J. Pei, 2009, Transformer reliability assessment using Weibull distribution and DGA data, IEEE Trans. Dielectrics and Electrical Insulation, Vol. 16, No. 4, pp. 985-992
6
S. Singh, M. Bandyopadhyay, 2010, Dissolved gas analysis using fuzzy logic for power transformer incipient fault diagnosis, Electric Power Systems Research, Vol. 80, No. 9, pp. 1041-1049
7
S. Ghoneim, I. Taha, N. Elkalashy, 2016, Integrated ANN-based proactive fault diagnostic scheme for power transformers using DGA, IEEE Trans. Dielectrics and Electrical Insulation, Vol. 23, No. 3, pp. 1838-1845
8
S. Fei, X. Zhang, 2013, Fault diagnosis of power transformer based on support vector machine, Expert Systems with Applications, Vol. 40, No. 18, pp. 7562-7569
9
I. Taha, S. Ghoneim, A. Zaini, 2017, Transformer fault prediction using random forest and dissolved gas analysis, IEEE Access, Vol. 5, pp. 15305-15312
10
A. Shintemirov, W. Tang, Q. Wu, 2014, Power transformer condition assessment using genetic programming and dissolved gas analysis, IEEE Trans. Power Delivery, Vol. 29, No. 4, pp. 1829-1837
11
J. Li, Q. Zhang, K. Wang, 2018, Power transformer dissolved gas analysis using particle swarm optimization, International Journal of Electrical Power & Energy Systems, Vol. 104, pp. 687-695
12
H. Illias, X. Zhao, A. Bakar, 2019, Hybrid modified evolutionary particle swarm optimisation-adaptive neuro-fuzzy inference system for transformer fault diagnosis, Measurement, Vol. 129, pp. 636-651
13
J. Dai, H. Song, G. Sheng, 2019, Dissolved gas analysis using deep belief networks for power transformer fault diagnosis, Energies, Vol. 12, No. 5, pp. 915
14
M. Liu, X. Li, J. Lou, 2020, 1D-CNN based intelligent fault diagnosis for power transformers using DGA, IEEE Trans. Industrial Electronics, Vol. 67, No. 12, pp. 10836-10844
15
Y. Zhang, X. Wei, Y. Fan, 2021, LSTM-based oil temperature prediction for power transformers, IEEE Trans. Power Delivery, Vol. 36, No. 3, pp. 1469-1478
16
L. Yang, Z. Guo, X. Lai, 2021, GRU-based health index prediction for power transformers, IEEE Trans. Instrumentation and Measurement, Vol. 70, pp. 1-12
17
H. Wang, X. Ma, Y. Zhao, 2022, Attention-based RNN for intelligent transformer fault diagnosis, IEEE Trans. Industrial Informatics, Vol. 18, No. 9, pp. 5936-5944
18
W. Li, Y. Zhang, T. Chen, 2023, Transformer-based anomaly detection in power systems, IEEE Trans. Smart Grid, Vol. 14, No. 2, pp. 1547-1556
19
R. Zhao, D. Wang, R. Yan, 2023, Graph neural networks for power system fault diagnosis, IEEE Trans. Power Systems, Vol. 38, No. 3, pp. 2190-2202