• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
2024, Large Power Transformers and the U.S. Electric Grid, Infrastructure Security and Energy Restoration ReportGoogle Search
2 
2023, Condition Assessment of Power Transformers, CIGRE Technical Brochure 761Google Search
3 
M. Duval, 2002, A review of faults detectable by gas-in-oil analysis in transformers, IEEE Electrical Insulation Magazine, Vol. 18, No. 3, pp. 8-17DOI
4 
C. Lin, J. Ling, Z. Huang, 2003, Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers, Expert Systems with Applications, Vol. 24, No. 2, pp. 157-163DOI
5 
L. Wang, X. Zhao, J. Pei, 2009, Transformer reliability assessment using Weibull distribution and DGA data, IEEE Trans. Dielectrics and Electrical Insulation, Vol. 16, No. 4, pp. 985-992Google Search
6 
S. Singh, M. Bandyopadhyay, 2010, Dissolved gas analysis using fuzzy logic for power transformer incipient fault diagnosis, Electric Power Systems Research, Vol. 80, No. 9, pp. 1041-1049Google Search
7 
S. Ghoneim, I. Taha, N. Elkalashy, 2016, Integrated ANN-based proactive fault diagnostic scheme for power transformers using DGA, IEEE Trans. Dielectrics and Electrical Insulation, Vol. 23, No. 3, pp. 1838-1845DOI
8 
S. Fei, X. Zhang, 2013, Fault diagnosis of power transformer based on support vector machine, Expert Systems with Applications, Vol. 40, No. 18, pp. 7562-7569Google Search
9 
I. Taha, S. Ghoneim, A. Zaini, 2017, Transformer fault prediction using random forest and dissolved gas analysis, IEEE Access, Vol. 5, pp. 15305-15312Google Search
10 
A. Shintemirov, W. Tang, Q. Wu, 2014, Power transformer condition assessment using genetic programming and dissolved gas analysis, IEEE Trans. Power Delivery, Vol. 29, No. 4, pp. 1829-1837Google Search
11 
J. Li, Q. Zhang, K. Wang, 2018, Power transformer dissolved gas analysis using particle swarm optimization, International Journal of Electrical Power & Energy Systems, Vol. 104, pp. 687-695Google Search
12 
H. Illias, X. Zhao, A. Bakar, 2019, Hybrid modified evolutionary particle swarm optimisation-adaptive neuro-fuzzy inference system for transformer fault diagnosis, Measurement, Vol. 129, pp. 636-651Google Search
13 
J. Dai, H. Song, G. Sheng, 2019, Dissolved gas analysis using deep belief networks for power transformer fault diagnosis, Energies, Vol. 12, No. 5, pp. 915Google Search
14 
M. Liu, X. Li, J. Lou, 2020, 1D-CNN based intelligent fault diagnosis for power transformers using DGA, IEEE Trans. Industrial Electronics, Vol. 67, No. 12, pp. 10836-10844Google Search
15 
Y. Zhang, X. Wei, Y. Fan, 2021, LSTM-based oil temperature prediction for power transformers, IEEE Trans. Power Delivery, Vol. 36, No. 3, pp. 1469-1478Google Search
16 
L. Yang, Z. Guo, X. Lai, 2021, GRU-based health index prediction for power transformers, IEEE Trans. Instrumentation and Measurement, Vol. 70, pp. 1-12Google Search
17 
H. Wang, X. Ma, Y. Zhao, 2022, Attention-based RNN for intelligent transformer fault diagnosis, IEEE Trans. Industrial Informatics, Vol. 18, No. 9, pp. 5936-5944Google Search
18 
W. Li, Y. Zhang, T. Chen, 2023, Transformer-based anomaly detection in power systems, IEEE Trans. Smart Grid, Vol. 14, No. 2, pp. 1547-1556Google Search
19 
R. Zhao, D. Wang, R. Yan, 2023, Graph neural networks for power system fault diagnosis, IEEE Trans. Power Systems, Vol. 38, No. 3, pp. 2190-2202Google Search