Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers

References

1 
S. Zhang, S. Zhang, T. Huang, W. Gao, 2008, Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching, IEEE Trans Multi- med 20:1576-1590DOI
2 
S. Li, W. Deng, 2020, Deep facial expression recognition: A survey, IEEE Trans Affective Comp (Early Access)DOI
3 
N. Sun, L. Qi, R. Huan, J. Liu, G. Han, 2019, Deep spatial- temporal feature fusion for facial expression recognition in static images, Pattern Recognit Lett 119, pp. 49-61DOI
4 
Myeong Oh Lee, Ui Nyoung Yoon, Seunghyun Ko, Geun- Sik Jo, 2019. 12, Efficient CNNs with Channel Attention and Group Convolution for Facial Expression Recognition, Journal of KIISE, Vol. 46, Vol. 12, No. 46, pp. 1241-1248DOI
5 
J. Hamm, C. G. Kohler, R. C. Gur, R. Verma, 2011, Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders., J Neurosci Methods, 200, pp. 237-256DOI
6 
B. C. Ko, 2018, A brief review of facial emotion recognition based on visual information, Sensors 18DOI
7 
A. Mehrabian, 1968, Communication without words, Psychol Today 2, pp. 53-56DOI
8 
K. Kaulard, D. W. Cunningham, H. H. Blthoff, C. Wallraven, 2012, The MPI facial expression database-A validated database of emotional and conversational facial expressions, PLoS ONE 7, pp. e32321DOI
9 
R. Livingstone Steven, A. Russo1 Frank, 2018, The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English, PloS one, Vol. 13, No. 5, pp. e0196391DOI
10 
Sung-Woo Byun, Seok-Pil Lee, 2016, Emotion Recognition Using Tone and Tempo Based on Voice for IoT, The Tran- sactions of the Korean Institute of Electrical Engineers, Vol. 65, No. 1DOI
11 
H. Jung, S. Lee, J. Yim, S. Park, J. Kim, 2015, Joint fine-tuning in deep neural networks for facial expression recognition, 2015 IEEE Int Conf Comput Vision (ICCV)DOI
12 
Wang Xusheng, Chen Xing, Cao Congjun, , Human emotion recognition by optimally fusing facial expression and speech featureDOI
13 
Y. Ma, Y. Hao, M. Chen, J. Chen, P. Lu, A. Kosir, 2019, Audiovisual emotion fusion (AVEF): A deep efficient weighted approach, Inf Fusion 46, pp. 184-192DOI
14 
M. S. Hossain, G. Muhammad, 2019, Emotion recognition using deep learning approach from audio-visual emotional big data, Inf Fusion 49, pp. 69-78DOI
15 
A. A. A. Zamil, S Hasan, S. J. Baki, J. Adam, I. Zaman, 2019, Emotion detection from speech signals using voting mechan- ism on classified frames, 2019 Int Conf Robotics, Electr Signal Processing Technol (ICREST)DOI
16 
F. A. Shaqr, R. Duwairi, M. Al-Ayyou, 2019, Recognizing emotion from speech based on age and gender using hierarchical models, Procedia Comput Sci 151, pp. 37-44DOI